skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures

Abstract

Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms using a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantommore » was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

Authors:
; ; ; ;  [1]
  1. Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)
Publication Date:
OSTI Identifier:
22649309
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; BONE TISSUES; COMPUTER CODES; COMPUTERIZED TOMOGRAPHY; CRYSTALLINE LENS; HEAD; IONIZATION CHAMBERS; MONTE CARLO METHOD; PHANTOMS; RADIATION DOSES

Citation Formats

Xiong, Z, Vijayan, S, Kilian-Meneghin, J, Rudin, S, and Bednarek, D. SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures. United States: N. p., 2016. Web. doi:10.1118/1.4956946.
Xiong, Z, Vijayan, S, Kilian-Meneghin, J, Rudin, S, & Bednarek, D. SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures. United States. doi:10.1118/1.4956946.
Xiong, Z, Vijayan, S, Kilian-Meneghin, J, Rudin, S, and Bednarek, D. 2016. "SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures". United States. doi:10.1118/1.4956946.
@article{osti_22649309,
title = {SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures},
author = {Xiong, Z and Vijayan, S and Kilian-Meneghin, J and Rudin, S and Bednarek, D},
abstractNote = {Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms using a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantom was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.},
doi = {10.1118/1.4956946},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To compare and contrast two commercial SRS QA phantoms. Methods: Both phantoms were evaluated in terms of their ease of setup as well as the time required to switch inserts for different tests. They were both used to evaluate the coincidence of the radiation and laser isocenters of a linear accelerator. End-to-end dosimetric tests were also performed using both ion chambers and films along two planes through the center of the phantoms. Since one phantom allows for multiple ion chamber orientations, a test was also performed to determine the effect of having the chamber oriented along the radiation beammore » axis’. Results: Changing inserts took 2 minutes on average for one phantom compared to 5 minutes for the other. The laser/radiation isocenter coincidence as determined from each phantom showed a maximum difference of 0.2mm. Ion chamber results were within 0.5% of the expected values when the chamber was perpendicular to the beams but measured a 3% underdose when the chamber was along the beam direction. Gamma (2%,2mm) pass rates of corresponding films were within 1% between phantoms. Conclusion: The results of the corresponding tests run on both phantoms were comparable, showing that the phantoms were equivalent for the subset of SRS QA tests run here. However, the under dose observed when the chamber was parallel to the beam direction suggests that this configuration should be avoided.« less
  • Purpose: Molecular breast imaging (MBI) is a nuclear medicine technology that uses dual-head cadmium zinc telluride (CZT) gamma cameras to image functional uptake of a radiotracer, Tc-99m sestamibi, in the breast. An important factor in adoption of MBI in the screening setting is reduction of the necessary administered dose of Tc-99m sestamibi from the typically used dose of 740 MBq to approximately 148 MBq, such that MBI's whole-body effective dose is comparable to that of screening mammography. Methods that increase MBI count sensitivity may allow a proportional reduction in the necessary administered dose. Our objective was to evaluate the impactmore » of two count sensitivity improvement methods on image quality by evaluating count sensitivity, spatial resolution, and lesion contrast in phantom simulations. Methods: Two dual-head CZT-based MBI systems were studied: LumaGem and Discovery NM 750b. Two count sensitivity improvement methods were implemented: registered collimators optimized for dedicated breast imaging and widened energy acceptance window optimized for use with CZT. System sensitivity, spatial resolution, and tumor contrast-to-noise ratio (CNR) were measured comparing standard collimation and energy window setting [126-154 keV (+10%, -10%)] with optimal collimation and a wide energy window [110-154 keV (+10%, -21%)]. Results: Compared to the standard collimator designs and energy windows for these two systems, use of registered optimized collimation and wide energy window increased system sensitivity by a factor of 2.8-3.6. Spatial resolution decreased slightly for both systems with new collimation. At 3 cm from the collimator face, LumaGem's spatial resolution was 4.8 and 5.6 mm with standard and optimized collimation; Discovery NM 750b's spatial resolution was 4.4 and 4.6 mm with standard and optimized collimation, respectively. For both systems, at tumor depths of 1 and 3 cm, use of optimized collimation and wide energy window significantly improved CNR compared to standard settings for tumors 8.0 and 9.2 mm in diameter. At the closer depth of 1 cm, optimized collimation and wide energy window also significantly improved CNR for 5.9 mm tumors on Discovery NM 750b. Conclusions: Registered optimized collimation and wide energy window yield a substantial gain in count sensitivity and measurable gain in CNR, with some loss in spatial resolution compared to the standard collimator designs and energy windows used on these two systems. At low-count densities calculated to represent doses of 148 MBq, this tradeoff results in adequate count density and lesion contrast for detection of lesions {>=}8 mm in the middle of a typical breast (3 cm deep) and lesions {>=}6 mm close to the collimator (1 cm deep).« less
  • Purpose: To assess dose calculated by the 3DVH software (Sun Nuclear Systems, Melbourne, FL) against TLD measurements and treatment planning system calculations in anthropomorphic phantoms. Methods: The IROC Houston (RPC) head and neck (HN) and lung phantoms were scanned and plans were generated using Eclipse (Varian Medical Systems, Milpitas, CA) following IROC Houston procedures. For the H and N phantom, 6 MV VMAT and 9-field dynamic MLC (DMLC) plans were created. For the lung phantom 6 MV VMAT and 15 MV 9-field dynamic MLC (DMLC) plans were created. The plans were delivered to the phantoms and to an ArcCHECK (Sunmore » Nuclear Systems, Melbourne, FL). The head and neck phantom contained 8 TLDs located at PTV1 (4), PTV2 (2), and OAR Cord (2). The lung phantom contained 4 TLDs, 2 in the PTV, 1 in the cord, and 1 in the heart. Daily outputs were recorded before each measurement for correction. 3DVH dose reconstruction software was used to project the calculated dose to patient anatomy. Results: For the HN phantom, the maximum difference between 3DVH and TLDs was -3.4% and between 3DVH and Eclipse was 1.2%. For the lung plan the maximum difference between 3DVH and TLDs was 4.3%, except for the spinal cord for which 3DVH overestimated the TLD dose by 12%. The maximum difference between 3DVH and Eclipse was 0.3%. 3DVH agreed well with Eclipse because the dose reconstruction algorithm uses the diode measurements to perturb the dose calculated by the treatment planning system; therefore, if there is a problem in the modeling or heterogeneity correction, it will be carried through to 3DVH. Conclusion: 3DVH agreed well with Eclipse and TLD measurements. Comparison of 3DVH with film measurements is ongoing. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)« less
  • A comparison of the AAPM Protocol for the determination of absorbed dose from high-energy photon and electron beams (TG21) with currently used protocols for electron and photon dosimetry is presented. These protocols are the International Commission on Radiation Units and Measurements Report 21, Radiation Dosimetry: Electrons with Initial Energies Between 1 and 50 MeV (ICRU21), and the AAPM Protocol for the Dosimetry of X- and Gamma Ray Beams with Maximum Energies Between 0.6 and 50 MeV (SCRAD). Assuming a given radiation exposure and chamber parameters, doses to water at dmax for electron beams and at 5 g/cm2 for photon beamsmore » are calculated using the three protocols and then compared. The doses for photon beams calculated using the TG21 and SCRAD protocols are found to differ by 3% or less at energies below 10 MeV. The largest differences occur in photon doses at high energies where the dose calculated with the TG21 protocol is as much as 5.5% greater than that calculated with the SCRAD protocol for a typical thimble ionization chamber. For low electron beam energies, the doses calculated with the ICRU21 protocol are as much as 5% less than TG21 doses when using thimble chambers constructed of tissue-equivalent materials in a water phantom. If dosimetry measurements are performed in polystyrene, the dose calculated using TG21 may be greater than the ICRU21 dose, depending on chamber size and composition. An explanation for some of the differences between the protocols is presented emphasizing the dependence on chamber geometry, chamber composition, and phantom composition.« less