Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

SU-F-T-660: Evaluating the Benefit of Using Dual-Function Fiducial Markers for In-Situ Delivery of Radiosenistizing Gold Nanoparticles During Image-Guided Radiotherapy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4956846· OSTI ID:22649215
; ; ;  [1]
  1. University Massachusetts Lowell, Lowell, MA (United States)

Purpose: Dual-function fiducials loaded with radiosensitizers, like gold nanoparticles (GNP), offer an innovative approach for ensuring geometric accuracy during image-guided radiotherapy (IGRT) and significantly increasing therapeutic efficacy due to controlled in-situ release of the radiosensitizers. This study retrospectively investigates the dosimetric benefit of using up to two such dual-function fiducial markers instead of traditional single function fiducials during IGRT. Methods: A computational code was developed to investigate the dosimetric benefit for 10 real patient tumor volumes of up to 6.5 cm diameter. The intra-tumoral space-time biodistribution of the GNP was modeled as in previous studies based on Fick’s second law. The corresponding dose-enhancement for each tumor voxel due to the GNP was also calculated for clinical 6MV beam configurations. Various loading concentrations (25–50 mg/g) were studied, as a function of GNP size, to determine potential for clinically significant dose enhancement. The time between initial implantation of dual-function fiducials to the beginning of radiotherapy was assumed to be 14 days as typical for many clinics. Results: A single dual-function fiducial could achieve at least a DEF of 1.2 for patients with tumors less than 1.4 cm diameter after 14 days. Replacing two single function fiducials with dual-function ones at the same locations achieved at least the required minimal DEF for tumors that are 2 cm diameter in 3 patients. The results also revealed dosimetrically better fiducial locations which could enable significant DEF when using one or two dual function fiducials. 2 nm sizes showed the most feasibility. Conclusion: The results highlight the potential of tumor sub-volume radiation boosting using GNP released from fiducials, and the ability to customize the DEF throughout the tumor by using two dual-function fiducials, varying the initial concentration and nanoparticle size. The results demonstrate potential for employing dual-function fiducials in the development of GNP-aided radiotherapy.

OSTI ID:
22649215
Journal Information:
Medical Physics, Journal Name: Medical Physics Journal Issue: 6 Vol. 43; ISSN 0094-2405; ISSN MPHYA6
Country of Publication:
United States
Language:
English

Similar Records

TU-H-CAMPUS-TeP3-02: In-Situ Dose Painting Using Gold Nanoparticles Released From Cylindrically Shaped Fiducials During External Beam Radiation Therapy
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Medical Physics · OSTI ID:22654078

WE-FG-BRA-07: Theranostic Nanoparticles Improve Clinical MR-Guided Radiation Therapy
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Medical Physics · OSTI ID:22679076

TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy
Journal Article · Sun Jun 15 00:00:00 EDT 2014 · Medical Physics · OSTI ID:22412401