skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-23: Field-Of-View Expansion in Cone-Beam CT Reconstruction by Use of Prior Information

Abstract

Purpose: Cone-beam CT (CBCT) has become an integral part of online patient setup in an image-guided radiation therapy (IGRT). In addition, the utility of CBCT for dose calculation has actively been investigated. However, the limited size of field-of-view (FOV) and resulted CBCT image with a lack of peripheral area of patient body prevents the reliability of dose calculation. In this study, we aim to develop an FOV expanded CBCT in IGRT system to allow the dose calculation. Methods: Three lung cancer patients were selected in this study. We collected the cone-beam projection images in the CBCT-based IGRT system (X-ray volume imaging unit, ELEKTA), where FOV size of the provided CBCT with these projections was 410 × 410 mm{sup 2} (normal FOV). Using these projections, CBCT with a size of 728 × 728 mm{sup 2} was reconstructed by a posteriori estimation algorithm including a prior image constrained compressed sensing (PICCS). The treatment planning CT was used as a prior image. To assess the effectiveness of FOV expansion, a dose calculation was performed on the expanded CBCT image with region-of-interest (ROI) density mapping method, and it was compared with that of treatment planning CT as well as that of CBCT reconstructed bymore » filtered back projection (FBP) algorithm. Results: A posteriori estimation algorithm with PICCS clearly visualized an area outside normal FOV, whereas the FBP algorithm yielded severe streak artifacts outside normal FOV due to under-sampling. The dose calculation result using the expanded CBCT agreed with that using treatment planning CT very well; a maximum dose difference was 1.3% for gross tumor volumes. Conclusion: With a posteriori estimation algorithm, FOV in CBCT can be expanded. Dose comparison results suggested that the use of expanded CBCTs is acceptable for dose calculation in adaptive radiation therapy. This study has been supported by KAKENHI (15K08691).« less

Authors:
; ; ;  [1];  [2]
  1. University of Tokyo Hospital, Tokyo (Japan)
  2. Teikyo University, Tokyo (Japan)
Publication Date:
OSTI Identifier:
22632158
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; IMAGES; LUNGS; NEOPLASMS; PATIENTS; PLANNING; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Haga, A, Magome, T, Nakano, M, Nakagawa, K, and Kotoku, J. SU-F-J-23: Field-Of-View Expansion in Cone-Beam CT Reconstruction by Use of Prior Information. United States: N. p., 2016. Web. doi:10.1118/1.4955931.
Haga, A, Magome, T, Nakano, M, Nakagawa, K, & Kotoku, J. SU-F-J-23: Field-Of-View Expansion in Cone-Beam CT Reconstruction by Use of Prior Information. United States. doi:10.1118/1.4955931.
Haga, A, Magome, T, Nakano, M, Nakagawa, K, and Kotoku, J. 2016. "SU-F-J-23: Field-Of-View Expansion in Cone-Beam CT Reconstruction by Use of Prior Information". United States. doi:10.1118/1.4955931.
@article{osti_22632158,
title = {SU-F-J-23: Field-Of-View Expansion in Cone-Beam CT Reconstruction by Use of Prior Information},
author = {Haga, A and Magome, T and Nakano, M and Nakagawa, K and Kotoku, J},
abstractNote = {Purpose: Cone-beam CT (CBCT) has become an integral part of online patient setup in an image-guided radiation therapy (IGRT). In addition, the utility of CBCT for dose calculation has actively been investigated. However, the limited size of field-of-view (FOV) and resulted CBCT image with a lack of peripheral area of patient body prevents the reliability of dose calculation. In this study, we aim to develop an FOV expanded CBCT in IGRT system to allow the dose calculation. Methods: Three lung cancer patients were selected in this study. We collected the cone-beam projection images in the CBCT-based IGRT system (X-ray volume imaging unit, ELEKTA), where FOV size of the provided CBCT with these projections was 410 × 410 mm{sup 2} (normal FOV). Using these projections, CBCT with a size of 728 × 728 mm{sup 2} was reconstructed by a posteriori estimation algorithm including a prior image constrained compressed sensing (PICCS). The treatment planning CT was used as a prior image. To assess the effectiveness of FOV expansion, a dose calculation was performed on the expanded CBCT image with region-of-interest (ROI) density mapping method, and it was compared with that of treatment planning CT as well as that of CBCT reconstructed by filtered back projection (FBP) algorithm. Results: A posteriori estimation algorithm with PICCS clearly visualized an area outside normal FOV, whereas the FBP algorithm yielded severe streak artifacts outside normal FOV due to under-sampling. The dose calculation result using the expanded CBCT agreed with that using treatment planning CT very well; a maximum dose difference was 1.3% for gross tumor volumes. Conclusion: With a posteriori estimation algorithm, FOV in CBCT can be expanded. Dose comparison results suggested that the use of expanded CBCTs is acceptable for dose calculation in adaptive radiation therapy. This study has been supported by KAKENHI (15K08691).},
doi = {10.1118/1.4955931},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Prior images can be incorporated into the image reconstruction process to improve the quality of subsequent cone-beam CT (CBCT) images from sparse-view or low-dose projections. The purpose of this work is to develop a deformed prior image-based reconstruction (DPIR) strategy to mitigate the deformation between the prior image and the target image. Methods: The deformed prior image is obtained by a projection-based registration approach. Specifically, the deformation vector fields used to deform the prior image are estimated through iteratively matching the forward projection of the deformed prior image and the measured on-treatment projections. The deformed prior image is thenmore » used as the prior image in the standard prior image constrained compressed sensing (PICCS) algorithm. A simulation study on an XCAT phantom and a clinical study on a head-and-neck cancer patient were conducted to evaluate the performance of the proposed DPIR strategy. Results: The deformed prior image matches the geometry of the on-treatment CBCT more closely as compared to the original prior image. Consequently, the performance of the DPIR strategy from few-view projections is improved in comparison to the standard PICCS algorithm, based on both visual inspection and quantitative measures. In the XCAT phantom study using 20 projections, the average root mean squared error is reduced from 14% in PICCS to 10% in DPIR, and the average universal quality index increases from 0.88 in PICCS to 0.92 in DPIR. Conclusions: The present DPIR approach provides a practical solution to the mismatch problem between the prior image and target image, which improves the performance of the original PICCS algorithm for CBCT reconstruction from few-view or low-dose projections.« less
  • Purpose: Prior image can be incorporated into image reconstruction process to improve the quality of on-treatment cone-beam CT (CBCT) from sparseview or low-dose projections. However, the deformation between the prior image and on-treatment CBCT are not considered in current prior image based reconstructions (e.g., prior image constrained compressed sensing (PICCS)). The purpose of this work is to develop a deformed-prior-imagebased- reconstruction strategy (DPIR) to address the mismatch problem between the prior image and target image. Methods: The deformed prior image is obtained by a projection based registration approach. Specifically, the deformation vector fields (DVF) used to deform the prior imagemore » is estimated through matching the forward projection of the prior image and the measured on-treatment projection. The deformed prior image is then used as the prior image in the standard PICCS algorithm. Simulation studies on the XCAT phantom was conducted to evaluate the performance of the projection based registration procedure and the proposed DPIR strategy. Results: The deformed prior image matches the geometry of on-treatment CBCT closer as compared to the original prior image. Using the deformed prior image, the quality of the image reconstructed by DPIR from few-view projection data is greatly improved as compared to the standard PICCS algorithm. The relative image reconstruction error is reduced to 11.13% in the proposed DPIR from 17.57% in the original PICCS. Conclusion: The proposed DPIR approach can solve the mismatch problem between the prior image and target image, which overcomes the limitation of the original PICCS algorithm for CBCT reconstruction from sparse-view or low-dose projections.« less
  • Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it ismore » implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.« less
  • Purpose: Current on-board imaging systems commonly used by modern linear accelerators (LINACs) have a limited field of view (FOV) for a cone-beam CT (CBCT) scan, which is typically less than 50 cm. Consequently, truncation artifacts often occur for large patients. The goal of this work is to investigate a novel method to increase the FOV for current on-board CBCT systems. Methods: When a large patient is scanned with CBCT, any region outside the FOV is only partially sampled within a short range of projection angles, and at other angles no x-ray beams may pass through that region. To increase themore » sampling rate for the region outside the FOV, we have designed a new source trajectory by shifting the center of rotation during a CBCT scan. This resulted in a reduced sampling rate at the central area and increased sampling rate at the edges. The tradeoff led to a more balanced sampling for an enlarged FOV. An iterative algorithm was also developed to reconstruct the CT image under the new sampling scheme using a compressed sensing technique. Results: The method was validated by numerical simulations mimicking a Varian Trilogy CBCT system, and it was found that artifact-free images could be obtained with the FOV as large as 80 cm. Conclusions: The new CT scanning trajectory can be easily realized under current clinical setup with little modification of the control system, and this can be useful for treating obese patients.« less
  • An exact inversion formula written in the form of shift-variant filtered-backprojection (FBP) is given for reconstruction from cone-beam data taken from any orbit satisfying Tuy's sufficiency conditions. The method is based on a result of Grangeat, involving the derivative of the three-dimensional (3-D) Radon transform, but unlike Grangeat's algorithm, no 3D rebinning step is required. Data redundancy, which occurs when several cone-beam projections supply the same values in the Radon domain, is handled using an elegant weighting function and without discarding data. The algorithm is expressed in a convenient cone-beam detector reference frame, and a specific example for the casemore » of a dual orthogonal circular orbit is presented. When the method is applied to a single circular orbit, it is shown to be equivalent to the well-known algorithm of Feldkamp et al.« less