WE-G-BRF-07: Non-Circular Scanning Trajectories with Varian Developer Mode
- University Chicago, Chicago, IL (United States)
Purpose: Cone-beam CT (CBCT) in image-guide radiation therapy (IGRT) typicallyacquires scan data via the circular trajectory of the linearaccelerator's (linac) gantry rotation. Though this lends itself toanalytic reconstruction algorithms like FDK, iterative reconstructionalgorithms allow for a broader range of scanning trajectories. Weimplemented a non-circular scanning trajectory with Varian's TrueBeamDeveloper Mode and performed some preliminary reconstructions toverify the geometry. Methods: We used TrueBeam Developer Mode to program a new scanning trajectorythat increases the field of view (FOV) along the gantry rotation axiswithout moving the patient. This trajectory consisted of moving thegantry in a circle, then translating the source and detector along theaxial direction before acquiring another circular scan 19 cm away fromthe first. The linear portion of the trajectory includes an additional4.5 cm above and below the axial planes of the source's circularrotation. We scanned a calibration phantom consisting of a lucite tubewith a spiral pattern of CT spots and used the maximum-likelihoodalgorithm to iteratively reconstruct the CBCT volume. Results: With the TrueBeam trajectory definition, we acquired projection dataof the calibration phantom using the previously described trajectory.We obtained a scan of the treatment couch for log normalization byscanning with the same trajectory but without the phantom present.Using the nominal geometric parameters reported in the projectionheaders with our iterative reconstruction algorithm, we obtained acorrect reconstruction of the calibration phantom. Conclusion: The ability to implement new scanning trajectories with the TrueBeamDeveloper Mode enables us access to a new parameter space for imagingwith CBCT for IGRT. Previous simulations and simple dual circle scanshave shown iterative reconstruction with non-circular trajectories canincrease the axial FOV with CBCT. Use of Developer Mode allowsexperimentally testing these and other new scanning trajectories. Support was provided in part by the University of Chicago Research Computing Center, Varian Medical Systems, and NIH Grants 1RO1CA120540, T32EB002103, S10 RR021039 and P30 CA14599. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the supporting organizations.
- OSTI ID:
- 22409756
- Journal Information:
- Medical Physics, Journal Name: Medical Physics Journal Issue: 6 Vol. 41; ISSN 0094-2405; ISSN MPHYA6
- Country of Publication:
- United States
- Language:
- English
Similar Records
Upright cone beam CT imaging using the onboard imager
Filtered-backprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations
Poster — Thur Eve — 12: Implementation of a Clinical Lung Tumour High Dose Containment Verification Procedure using Respiratory Cone-Beam CT (4DCBCT) on a Varian TrueBeam Linac
Journal Article
·
Sun Jun 15 00:00:00 EDT 2014
· Medical Physics
·
OSTI ID:22250607
Filtered-backprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations
Journal Article
·
Sun May 15 00:00:00 EDT 2016
· Medical Physics
·
OSTI ID:22620889
Poster — Thur Eve — 12: Implementation of a Clinical Lung Tumour High Dose Containment Verification Procedure using Respiratory Cone-Beam CT (4DCBCT) on a Varian TrueBeam Linac
Journal Article
·
Fri Aug 15 00:00:00 EDT 2014
· Medical Physics
·
OSTI ID:22409526