skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-P-30: Clinical Assessment of Auto Beam-Hold Triggered by Fiducial Localization During Prostate RapidArc Delivery

Abstract

Purpose: To assess the clinical efficacy of auto beam hold during prostate RapidArc delivery, triggered by fiducial localization on kV imaging with a Varian True Beam. Methods: Prostate patients with four gold fiducials were candidates in this study. Daily setup was accomplished by aligning to fiducials using orthogonal kV imaging. During RapidArc delivery, a kV image was automatically acquired with a momentary beam hold every 60 degrees of gantry rotation. The position of each fiducial was identified by a search algorithm and compared to a predetermined 1.4 cm diameter target area. Treatment continued if all the fiducials were within the target area. If any fiducial was outside the target area the beam hold was not released, and the operators determined if the patient needed re-alignment using the daily setup method. Results: Four patients were initially selected. For three patients, the auto beam hold performed seamlessly. In one instance, the system correctly identified misaligned fiducials, stopped treatment, and the patient was re-positioned. The fourth patient had a prosthetic hip which sometimes blocked the fiducials and caused the fiducial search algorithm to fail. The auto beam hold was disabled for this patient and the therapists manually monitored the fiducial positions during treatment.more » Average delivery time for a 2-arc fraction was increased by 59 seconds. Phantom studies indicated the dose discrepancy related to multiple beam holds is <0.1%. For a plan with 43 fractions, the additional imaging increased dose by an estimated 68 cGy. Conclusion: Automated intrafraction kV imaging can effectively perform auto beam holds due to patient movement, with the exception of prosthetic hip patients. The additional imaging dose and delivery time are clinically acceptable. It may be a cost-effective alternative to Calypso in RapidArc prostate patient delivery. Further study is warranted to explore its feasibility under various clinical conditions.« less

Authors:
;  [1]
  1. Flower Hospital, Sylvania, OH (United States)
Publication Date:
OSTI Identifier:
22624469
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; ALIGNMENT; BEAMS; BIOMEDICAL RADIOGRAPHY; DELIVERY; IMAGES; PATIENTS; PHANTOMS; PROSTATE; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Atkinson, P, and Chen, Q. SU-F-P-30: Clinical Assessment of Auto Beam-Hold Triggered by Fiducial Localization During Prostate RapidArc Delivery. United States: N. p., 2016. Web. doi:10.1118/1.4955737.
Atkinson, P, & Chen, Q. SU-F-P-30: Clinical Assessment of Auto Beam-Hold Triggered by Fiducial Localization During Prostate RapidArc Delivery. United States. doi:10.1118/1.4955737.
Atkinson, P, and Chen, Q. Wed . "SU-F-P-30: Clinical Assessment of Auto Beam-Hold Triggered by Fiducial Localization During Prostate RapidArc Delivery". United States. doi:10.1118/1.4955737.
@article{osti_22624469,
title = {SU-F-P-30: Clinical Assessment of Auto Beam-Hold Triggered by Fiducial Localization During Prostate RapidArc Delivery},
author = {Atkinson, P and Chen, Q},
abstractNote = {Purpose: To assess the clinical efficacy of auto beam hold during prostate RapidArc delivery, triggered by fiducial localization on kV imaging with a Varian True Beam. Methods: Prostate patients with four gold fiducials were candidates in this study. Daily setup was accomplished by aligning to fiducials using orthogonal kV imaging. During RapidArc delivery, a kV image was automatically acquired with a momentary beam hold every 60 degrees of gantry rotation. The position of each fiducial was identified by a search algorithm and compared to a predetermined 1.4 cm diameter target area. Treatment continued if all the fiducials were within the target area. If any fiducial was outside the target area the beam hold was not released, and the operators determined if the patient needed re-alignment using the daily setup method. Results: Four patients were initially selected. For three patients, the auto beam hold performed seamlessly. In one instance, the system correctly identified misaligned fiducials, stopped treatment, and the patient was re-positioned. The fourth patient had a prosthetic hip which sometimes blocked the fiducials and caused the fiducial search algorithm to fail. The auto beam hold was disabled for this patient and the therapists manually monitored the fiducial positions during treatment. Average delivery time for a 2-arc fraction was increased by 59 seconds. Phantom studies indicated the dose discrepancy related to multiple beam holds is <0.1%. For a plan with 43 fractions, the additional imaging increased dose by an estimated 68 cGy. Conclusion: Automated intrafraction kV imaging can effectively perform auto beam holds due to patient movement, with the exception of prosthetic hip patients. The additional imaging dose and delivery time are clinically acceptable. It may be a cost-effective alternative to Calypso in RapidArc prostate patient delivery. Further study is warranted to explore its feasibility under various clinical conditions.},
doi = {10.1118/1.4955737},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To present a novel positioning strategy which optimizes radiation delivery with radiobiological response knowledge, and to evaluate its application during prostate external beam radiotherapy. Methods: Ten patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions with PTV = prostate + 7 mm margin, except for 5mm in the posterior direction. Five representative pretreatment CBCT images were selected for each patient, and prostate, rectum, and bladder were delineated on all CBCT images. Each CBCTmore » was auto-registered to the corresponding PCT. Starting from this auto-matched position (AM-position), a search for optimal treatment position was performed utilizing a score function based on radiobiological and dosimetric indices (D98-DTV, NTCP-rectum, and NTCP-bladder) for the daily target volume (DTV), rectum, and bladder. DTV was defined as prostate + 4 mm margin to account for intra-fraction motion as well as contouring variability on CBCT. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The indices, averaged over the 10 patients’ treatment plans, were (mean±SD): 77.7±0.2 Gy (D98-PTV), 12.3±2.7% (NTCP-rectum), and 53.2±11.2% (NTCP-bladder). The corresponding values calculated on all 50 CBCT images at the AM-positions were 72.9±11.3 Gy (D98-DTV), 15.8±6.4% (NTCP-rectum), and 53.0±21.1% (NTCP-bladder), respectively. In comparison, calculated on CBCT at the ROCS-positions, the indices were 77.0±2.1 Gy (D98-DTV), 12.1±5.7% (NTCP-rectum), and 60.7±16.4% (NTCP-bladder). Compared to autoregistration, ROCS-optimization recovered dose coverage to target volume and lowered the risk to rectum. Moreover, NTCPrectum for one patient remained high after ROCS-optimization and therefore could potentially benefit from adaptive planning. Conclusion: These encouraging results illustrate the potential utility of applying radiobiologically optimized correction for online image-guided radiotherapy of prostate patients.« less
  • Purpose: Dual-function fiducials loaded with radiosensitizers, like gold nanoparticles (GNP), offer an innovative approach for ensuring geometric accuracy during image-guided radiotherapy (IGRT) and significantly increasing therapeutic efficacy due to controlled in-situ release of the radiosensitizers. This study retrospectively investigates the dosimetric benefit of using up to two such dual-function fiducial markers instead of traditional single function fiducials during IGRT. Methods: A computational code was developed to investigate the dosimetric benefit for 10 real patient tumor volumes of up to 6.5 cm diameter. The intra-tumoral space-time biodistribution of the GNP was modeled as in previous studies based on Fick’s second law.more » The corresponding dose-enhancement for each tumor voxel due to the GNP was also calculated for clinical 6MV beam configurations. Various loading concentrations (25–50 mg/g) were studied, as a function of GNP size, to determine potential for clinically significant dose enhancement. The time between initial implantation of dual-function fiducials to the beginning of radiotherapy was assumed to be 14 days as typical for many clinics. Results: A single dual-function fiducial could achieve at least a DEF of 1.2 for patients with tumors less than 1.4 cm diameter after 14 days. Replacing two single function fiducials with dual-function ones at the same locations achieved at least the required minimal DEF for tumors that are 2 cm diameter in 3 patients. The results also revealed dosimetrically better fiducial locations which could enable significant DEF when using one or two dual function fiducials. 2 nm sizes showed the most feasibility. Conclusion: The results highlight the potential of tumor sub-volume radiation boosting using GNP released from fiducials, and the ability to customize the DEF throughout the tumor by using two dual-function fiducials, varying the initial concentration and nanoparticle size. The results demonstrate potential for employing dual-function fiducials in the development of GNP-aided radiotherapy.« less
  • Purpose: The use of fiducials markers in prostate treatment allows a precise localization of this volume. Typical prostate SBRT margins with fiducials markers are 5mm in all directions, except toward the rectum, where 3mm is used. For some patients nearby pelvic lymph nodes with 5mm margin need to be irradiate assuming that its localization is linked to the prostate fiducial markers instead of bony anatomy. The purpose of this work was to analyze the geometric impact of locate the lymph node regions through the patient positioning by prostate fiducial markers. Methods: 10 patients with prostate SBRT with lymph nodes irradiationmore » were selected. Each patient had 5 implanted titanium fiducial markers. A Novalis TX (BrainLAB-Varian) with ExacTrac and aSi1000 portal image was used. Treatment plan uses 11 beams with a dose prescription (D95%) of 40Gy to the prostate and 25Gy to the lymph node in 5 fractions. Daily positioning was carried out by ExacTrac system based on the implanted fiducials as the reference treatment position; further position verification was performed using the ExacTrac and two portal images (gantry angle 0 and 90) based on bony structures. Comparison between reference position with bony based ExacTrac and portal image localization, was done for each treatment fraction Results: A total of 50 positioning analysis were done. The average discrepancy between reference treatment position and ExacTrac based on bony anatomy (pubic area) was 4.2mm [0.3; 11.2]. The discrepancy was <5mm in 61% of the cases and <9mm in 92%. Using portal images the average discrepancy was 3.7mm [0.0; 11.1]. The discrepancy was <5mm in 69% of the cases and <9mm in 96%. Conclusion: Localizing lymph node by prostate fiducial markers may produce large discrepancy as large as 11mm compared to bony based localization. Dosimetric impact of this discrepancy should be studied.« less
  • Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less
  • Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for bothmore » free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.« less