skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fluorinated graphene films with graphene quantum dots for electronic applications

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4953239· OSTI ID:22596786
;  [1]
  1. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090 (Russian Federation)

This work analyzes carrier transport, the relaxation of non-equilibrium charge, and the electronic structure of fluorinated graphene (FG) films with graphene quantum dots (GQDs). The FG films with GQDs were fabricated by means of chemical functionalization in an aqueous solution of hydrofluoric acid. High fluctuations of potential relief inside the FG barriers have been detected in the range of up to 200 mV. A phenomenological expression that describes the dependence of the time of non-equilibrium charge emission from GQDs on quantum confinement levels and film thickness (potential barrier parameters between GQDs) is suggested. An increase in the degree of functionalization leads to a decrease in GQD size, the removal of the GQD effect on carrier transport, and the relaxation of non-equilibrium charge. The study of the electronic properties of FG films with GQDs has revealed a unipolar resistive switching effect in the films with a relatively high degree of fluorination and a high current modulation (up to ON/OFF ∼ 10{sup 4}–10{sup 5}) in transistor-like structures with a lower degree of fluorination. 2D films with GQDs are believed to have considerable potential for various electronic applications (nonvolatile memory, 2D connections with optical control and logic elements).

OSTI ID:
22596786
Journal Information:
Journal of Applied Physics, Vol. 119, Issue 22; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English