skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-frequency noise in AlTiO/AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4952386· OSTI ID:22596718
; ; ; ;  [1]
  1. Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

Using aluminum titanium oxide (AlTiO, an alloy of Al{sub 2}O{sub 3} and TiO{sub 2}) as a high-k gate insulator, we fabricated and investigated AlTiO/AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors. From current low-frequency noise (LFN) characterization, we find Lorentzian spectra near the threshold voltage, in addition to 1/f spectra for the well-above-threshold regime. The Lorentzian spectra are attributed to electron trapping/detrapping with two specific time constants, ∼25 ms and ∼3 ms, which are independent of the gate length and the gate voltage, corresponding to two trap level depths of 0.5–0.7 eV with a 0.06 eV difference in the AlTiO insulator. In addition, gate leakage currents are analyzed and attributed to the Poole-Frenkel mechanism due to traps in the AlTiO insulator, where the extracted trap level depth is consistent with the Lorentzian LFN.

OSTI ID:
22596718
Journal Information:
Journal of Applied Physics, Vol. 119, Issue 20; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English