skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain management of AlGaN-based distributed Bragg reflectors with GaN interlayer grown by metalorganic chemical vapor deposition

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4961634· OSTI ID:22590474

We report the crack-free growth of a 45-pair Al{sub 0.30}Ga{sub 0.70}N/Al{sub 0.04}Ga{sub 0.96}N distributed Bragg reflector (DBR) on 2 in. diameter AlN/sapphire template by metalorganic chemical vapor deposition. To mitigate the cracking issue originating from the tensile strain of Al{sub 0.30}Ga{sub 0.70}N on GaN, an AlN template was employed in this work. On the other hand, strong compressive strain experienced by Al{sub 0.04}Ga{sub 0.96}N favors 3D island growth, which is undesired. We found that inserting an 11 nm thick GaN interlayer upon the completion of AlN template layer properly managed the strain such that the Al{sub 0.30}Ga{sub 0.70}N/Al{sub 0.04}Ga{sub 0.96}N DBR was able to be grown with an atomically smooth surface morphology. Smooth surfaces and sharp interfaces were observed throughout the structure using high-angle annular dark-field imaging in the STEM. The 45-pair AlGaN-based DBR provided a peak reflectivity of 95.4% at λ = 368 nm with a bandwidth of 15 nm.

OSTI ID:
22590474
Journal Information:
Applied Physics Letters, Vol. 109, Issue 8; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English