skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural insights into the thermal decomposition sequence of barium tetrahydrogenorthotellurate(VI), Ba[H{sub 4}TeO{sub 6}]

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [2];  [3]
  1. Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna (Austria)
  2. Institute for Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna (Austria)
  3. Institut für Mineralogie und Kristallographie, Fakultät für Geowissenschaften, Geographie und Astronomie, Universität Wien, Althanstr. 14 (UZA 2), A-1090 Vienna (Austria)

The compounds Ba[H{sub 4}TeO{sub 6}] (I), Ba[H{sub 2}TeO{sub 5}] (II), Ba[Te{sub 2}O{sub 6}(OH){sub 2}] (III) and Ba[TeO{sub 4}] (IV) were prepared by application of a diffusion method (I), under hydrothermal conditions (II and III) and from solid state reactions (IV), respectively. Structure analysis on the basis of single crystal X-ray diffraction data revealed novel structure types for (I), (II) and (III) and isotypism of (IV) with PrSbO{sub 4} and LaSbO{sub 4}. Common feature of the four oxotellurate(VI) structures are [TeO{sub 6}] octahedra. Whereas in the crystal structure of (I) the octahedral units are isolated, they are condensed into chains via corner-sharing in (II) and via edge-sharing in (III) and (IV). The coordination numbers of the barium cations in the four structures range from seven to ten. Although hydrogen atom positions could not be located for the structures of (I) and (II), short interpolyhedral O···O contacts are evident for strong hydrogen bonding. The temperature behaviour of (I), (II) and (IV) was monitored by simultaneous thermal analysis (STA) measurements and in situ powder X-ray diffraction, revealing the decomposition sequence Ba[H{sub 4}TeO{sub 6}] → Ba[H{sub 2}TeO{sub 5}] → Ba[TeO{sub 4}]→ Ba[TeO{sub 3}] upon heating to temperatures up to 900 °C. - Graphical abstract: The crystal structures of the four oxotellurates(VI) were determined from single crystal data. The thermal decomposition of Ba[H{sub 4}TeO{sub 6}], monitored by temperature-dependent X-ray powder diffraction and simultaneous thermal analysis measurements, involves two condensation reactions according to Ba[H{sub 4}TeO{sub 6}]→Ba[H{sub 2}TeO{sub 5}]+H{sub 2}O(↑)→Ba[TeO{sub 4}]+ H{sub 2}O(↑). Display Omitted.

OSTI ID:
22584209
Journal Information:
Journal of Solid State Chemistry, Vol. 241; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English