Enhancement of red upconversion emission of cubic phase NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanocrystals
Highlights: • The upconversion emission of Ho{sup 3+} ions was tuned from green to red. • The upconversion mechanism of Ho{sup 3+} ions was discussed based on emission spectrum. • The conversion efficiency between Ho{sup 3+} and Ce{sup 3+} were studied and calculated. - Abstract: The red upconversion emission of lanthanide-doped fluoride nanocrystals have great potential applications in color display and anticounterfeiting applications, especially for biological imaging and biomedical. In this work, a significant enhancement of red upconversion emission of Ho{sup 3+} ions was successfully obtained in the cubic phase NaLuF{sub 4} nanocrystals through codoping Ce{sup 3+} ions under NIR 980 nm excitation. The ratio of red-to-green emission of Ho{sup 3+} ions was enhanced about 10-fold, which is due to two efficient cross relaxation processes derived from Ho{sup 3+} and Ce{sup 3+} ions promoted the red emission and quenched the green emission. The upconversion emission and luminescent colors of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+} nanocrystals were carefully investigated by a confocal microscopy setup. The possible upconversion emission mechanism and conversion efficiency of cross relaxation between Ho{sup 3+} and Ce{sup 3+} ions were discussed in detail. The current study suggests that strong red emission of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanomaterials can be used for color display and anticounterfeiting techniques.
- OSTI ID:
- 22581602
- Journal Information:
- Materials Research Bulletin, Journal Name: Materials Research Bulletin Vol. 80; ISSN MRBUAC; ISSN 0025-5408
- Country of Publication:
- United States
- Language:
- English
Similar Records
Synthetic and spectroscopic studies of vanadate glaserites I: Upconversion studies of doubly co-doped (Er, Tm, or Ho):Yb:K{sub 3}Y(VO{sub 4}){sub 2}
Multicolour upconversion emission from Ho{sup 3+}-Tm{sup 3+}-Yb{sup 3+} codoped CaMoO{sub 4} phosphor