skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anisotropic magnetoresistance and current-perpendicular-to-plane giant magnetoresistance in epitaxial NiMnSb-based multilayers

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4939557· OSTI ID:22494885
; ; ;  [1]; ;  [1]
  1. National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

We fabricated (001)-oriented C1{sub b}-NiMnSb epitaxial films on MgO substrate by a magnetron sputtering system and systematically investigated the structure, magnetic property, and anisotropic magnetoresistance (AMR) effect. NiMnSb film was deposited using a stoichiometric NiMnSb target which has Mn-deficient (Mn ∼ 28.7 at. %) off-stoichiometric composition ratio. We have investigated bulk spin-polarization in NiMnSb films by measuring AMR on the basis of recent study for half-metallic L2{sub 1}-Heusler compounds. Although the negative sign of AMR ratio, which is indicative of half-metallic nature, was observed in the single layer NiMnSb films, the magnitude of AMR ratio (−0.10% at RT) was about half of the largest value reported for half-metallic L2{sub 1}-Heusler compounds. The current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) devices of NiMnSb/Ag/NiMnSb show MR ratio of 13.2% at 10 K and 4.2% at 300 K, which is higher than the previous result for NiMnSb/Cu/NiMnSb CPP-GMR devices [Caballero et al., J. Magn. Magn. Mater. 198–199, 55 (1999)], but much less than the CPP-GMR using L2{sub 1}-Heusler electrodes. The reduction of intrinsic bulk spin-polarization originating from the Mn-deficiency in NiMnSb layer is expected to be the main reason for small MR values.

OSTI ID:
22494885
Journal Information:
Journal of Applied Physics, Vol. 119, Issue 2; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English