skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large enhancement of bulk spin polarization by suppressing Co{sub Mn} anti-sites in Co{sub 2}Mn(Ge{sub 0.75}Ga{sub 0.25}) Heusler alloy thin film

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4944719· OSTI ID:22591476
; ;  [1]; ;  [2];  [3]; ;  [1]
  1. National Institute for Materials Science, Tsukuba 305-0047 (Japan)
  2. Japan Synchrotron Radiation Research Institute/SPring-8, Hyogo 679-5198 (Japan)
  3. Kyoto Institute of Technology, Kyoto 605-8585 (Japan)

We have investigated the structure and magneto-transport properties of Co{sub 2}Mn(Ge{sub 0.75}Ga{sub 0.25}) (CMGG) Heusler alloy thin films with near-stoichiometric and Mn-rich compositions in order to understand the effect of Co-Mn anti-sites on bulk spin polarization. Anomalous x-ray diffraction measurements using synchrotron radiated x-rays confirmed that Co{sub Mn} anti-sites easily form in the near-stoichiometric CMGG compound at annealing temperature higher than 400 °C, while it can be suppressed in Mn-rich CMGG films. Accordingly, large enhancement in negative anisotropic magnetoresistance of CMGG films and giant magnetoresistance (GMR) in current-perpendicular-to-plane (CPP) pseudo spin valves were observed in the Mn-rich composition. A large resistance-area product change (ΔRA) of 12.8 mΩ μm{sup 2} was demonstrated in the CPP-GMR pseudo spin valves using the Mn-rich CMGG layers after annealing at 600 °C. It is almost twice of the maximum output observed in the CPP-GMR pseudo spin valves using the near-stoichiometric CMGG. These indicate that the spin polarization of CMGG is enhanced in the Mn-rich composition through suppressing the formation of Co{sub Mn}-antisites in CMGG films, being consistent with first-principle calculation results.

OSTI ID:
22591476
Journal Information:
Applied Physics Letters, Vol. 108, Issue 12; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English