8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates
Journal Article
·
· Journal of Applied Physics
- Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)
The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.
- OSTI ID:
- 22494713
- Journal Information:
- Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 5 Vol. 118; ISSN JAPIAU; ISSN 0021-8979
- Country of Publication:
- United States
- Language:
- English
Similar Records
Theoretical studies of optical gain tuning by hydrostatic pressure in GaInNAs/GaAs quantum wells
Electronic band structure and optical gain of GaN{sub x}Bi{sub y}As{sub 1−x−y}/GaAs pyramidal quantum dots
Carriers confinement study of GaNAsBi/GaAs QWs emitting at 1.3 and 1.55 μm
Journal Article
·
Mon Jan 20 23:00:00 EST 2014
· Journal of Applied Physics
·
OSTI ID:22275679
Electronic band structure and optical gain of GaN{sub x}Bi{sub y}As{sub 1−x−y}/GaAs pyramidal quantum dots
Journal Article
·
Thu Apr 14 00:00:00 EDT 2016
· Journal of Applied Physics
·
OSTI ID:22594579
Carriers confinement study of GaNAsBi/GaAs QWs emitting at 1.3 and 1.55 μm
Journal Article
·
Fri May 15 00:00:00 EDT 2015
· Semiconductors
·
OSTI ID:22469966