skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of porous g-C{sub 3}N{sub 4}/La and enhanced photocatalytic activity for the degradation of phenol under visible light irradiation

Journal Article · · Journal of Solid State Chemistry
 [1];  [2]; ; ; ; ;  [2]
  1. School of Environment and Safety Engineering, Jiangsu University, 212013 Zhenjiang (China)
  2. School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang (China)

A series of porous g-C{sub 3}N{sub 4}/La (PGCN/La) materials used as photocatalyst for the degradation of phenol were prepared by two steps. The photocatalysts were characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), thermogravimetry (TG), Brunauer–Emmett–Teller (BET), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). From the TEM morphology, the porous structure of g-C{sub 3}N{sub 4} could be successfully controlled; from BET results, BET specific surface area of porous g-C{sub 3}N{sub 4} (PGCN) sample increases with the increasing of urea mass ratio. Compared with PGCN material (PGCN-50), PGCN/La sample (PGCN-50/La-5) could exhibit an enhanced photocatalytic activity and has the best degradation efficiency of 98.6% within 50 min under visible light irradiation. Photocatalytic reaction follows the first-order model kinetics; and PGCN-50/La-5 photocatalyst shows the largest reaction rate among all samples which is nearly 2.96 times higher than that of pure PGCN-50. The present work illustrates that the photocatalytic activity of porous g-C{sub 3}N{sub 4} was improved by the addition of La and PGCN-50/La-5 has potential application in the removal of phenol or other organic molecular from wastewater. - Graphical abstract: Porous g-C{sub 3}N{sub 4}/La photocatalyst is synthesized and its removal of phenol application has been explored. - Highlights: • Porous PGCN/La photocatalyst was prepared successfully by hydrothermal method. • PGCN/La has a highest degradation efficiency of 98.6% for phenol within 50 min. • The reaction rate of is nearly 2.96 times higher than that of pure PGCN. • As prepared material has potential application in removal of phenol from wastewater.

OSTI ID:
22486797
Journal Information:
Journal of Solid State Chemistry, Vol. 230; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English