Design and fabrication of a duoplasmatron extraction geometry and LEBT for the LANSCE H{sup +} RFQ project
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
The 750-keV H{sup +} Cockcroft-Walton at LANSCE will be replaced with a recently fabricated 4-rod Radio Frequency Quadrupole (RFQ) with injection energy of 35 keV. The existing duoplasmatron source extraction optics need to be modified to produce up to 35 mA of H{sup +} current with an emittance <0.02 π-cm-mrad (rms, norm) for injection into the RFQ. Parts for the new source have been fabricated and assembly is in process. We will use the existing duoplasmatron source with a newly designed extraction system and low energy beam transport (LEBT) for beam injection into the RFQ. In addition to source modifications, we need a new LEBT for transport and matching into the RFQ. The LEBT uses two magnetic solenoids with enough drift space between them to accommodate diagnostics and a beam deflector. The LEBT is designed to work over a range of space-charge neutralized currents and emittances. The LEBT is optimized in the sense that it minimizes the beam size in both solenoids for a point design of a given neutralized current and emittance. Special attention has been given to estimating emittance growth due to source extraction optics and solenoid aberrations. Examples of source-to-RFQ matching and emittance growth (due to both non-linear space charge and solenoid aberrations) are presented over a range of currents and emittances about the design point. A mechanical layout drawing will be presented along with the status of the source and LEBT, design, and fabrication.
- OSTI ID:
- 22483014
- Journal Information:
- Review of Scientific Instruments, Journal Name: Review of Scientific Instruments Journal Issue: 2 Vol. 87; ISSN 0034-6748; ISSN RSINAK
- Country of Publication:
- United States
- Language:
- English
Similar Records
H sup minus source and low energy transport for an RFQ preinjector
Status report on a dc 130-mA, 75-keV proton injector