skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NFkappaB activation is essential for miR-21 induction by TGFβ1 in high glucose conditions

Journal Article · · Biochemical and Biophysical Research Communications

Highlights: • Transforming growth factor beta 1 (TGFβ1) induces miR-21 in high glucose conditions. • NFkappaB activation and subsequent ROS generation are necessary for TGFβ1’s effect. • TGFβ1 facilitates binding of NFkB p65 to miR-21 promoter. • SMAD proteins bind to R-SBE sites on primary miR-21, in NFkB dependent manner. - Abstract: Transforming growth factor beta1 (TGFβ1) is a pleiotropic growth factor with a very broad spectrum of effects on wound healing. Chronic non-healing wounds such as diabetic foot ulcers express reduced levels of TGFβ1. On the other hand, our previous studies have shown that the microRNA miR-21 is differentially regulated in diabetic wounds and that it promotes migration of fibroblast cells. Although interplay between TGFβ1 and miR-21 are studied in relation to cancer, their interaction in the context of chronic wounds has not yet been investigated. In this study, we examined if TGFβ1 could stimulate miR-21 in fibroblasts that are subjected to high glucose environment. MiR-21 was, in fact, induced by TGFβ1 in high glucose conditions. The induction by TGFβ1 was dependent on NFκB activation and subsequent ROS generation. TGFβ1 was instrumental in degrading the NFκB inhibitor IκBα and facilitating the nuclear translocation of NFκB p65 subunit. EMSA studies showed enhanced DNA binding activity of NFκB in the presence of TGFβ1. ChIP assay revealed binding of p65 to miR-21 promoter. NFκB activation was also required for the nuclear translocation of Smad 4 protein and subsequent direct interaction of Smad proteins with primary miR-21 as revealed by RNA-IP studies. Our results show that manipulation of TGFβ1–NFκB–miR-21 pathway could serve as an innovative approach towards therapeutics to heal diabetic ulcers.

OSTI ID:
22416735
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 451, Issue 4; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English