skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Twin superlattice-induced large surface recombination velocity in GaAs nanostructures

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4903487· OSTI ID:22395456
; ;  [1];  [1]
  1. Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

Semiconductor nanowires (NWs) often contain a high density of twin defects that form a twin superlattice, but its effects on electronic properties are largely unknown. Here, nonadiabatic quantum molecular dynamics simulation shows unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective charge-recombination centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying surface-recombination processes.

OSTI ID:
22395456
Journal Information:
Applied Physics Letters, Vol. 105, Issue 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English