Parallel algorithms for unconstrained optimization by multisplitting with inexact subspace search - the abstract
- Arizona State Univ., Tempe, AZ (United States)
In a new parallel iterative algorithm for unconstrained optimization by multisplitting is proposed. In this algorithm the original problem is split into a set of small optimization subproblems which are solved using well known sequential algorithms. These algorithms are iterative in nature, e.g. DFP variable metric method. Here the authors use sequential algorithms based on an inexact subspace search, which is an extension to the usual idea of an inexact fine search. Essentially the idea of the inexact line search for nonlinear minimization is that at each iteration the authors only find an approximate minimum in the line search direction. Hence by inexact subspace search, they mean that, instead of finding the minimum of the subproblem at each interation, they do an incomplete down hill search to give an approximate minimum. Some convergence and numerical results for this algorithm will be presented. Further, the original theory will be generalized to the situation with a singular Hessian. Applications for nonlinear least squares problems will be presented. Experimental results will be presented for implementations on an Intel iPSC/860 Hypercube with 64 nodes as well as on the Intel Paragon.
- Research Organization:
- Front Range Scientific Computations, Inc., Boulder, CO (United States); USDOE, Washington, DC (United States); National Science Foundation, Washington, DC (United States)
- OSTI ID:
- 223839
- Report Number(s):
- CONF-9404305--Vol.1; ON: DE96005735
- Country of Publication:
- United States
- Language:
- English
Similar Records
Searching for consensus patterns on a hypercube
Performance of the Intel iPSC/860 hypercube