skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

Abstract

We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

Authors:
 [1]
  1. Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22299628
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 4; Journal Issue: 10; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION; DIELECTRIC MATERIALS; ELECTRIC FIELDS; ELECTRIC POTENTIAL; GALLIUM; HYSTERESIS; INDIUM; INSTABILITY; IRRADIATION; SEMICONDUCTOR MATERIALS; STRESSES; THIN FILMS; ZINC OXIDES

Citation Formats

Ha, Tae-Jun. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics. United States: N. p., 2014. Web. doi:10.1063/1.4899189.
Ha, Tae-Jun. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics. United States. doi:10.1063/1.4899189.
Ha, Tae-Jun. Wed . "Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics". United States. doi:10.1063/1.4899189.
@article{osti_22299628,
title = {Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics},
author = {Ha, Tae-Jun},
abstractNote = {We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.},
doi = {10.1063/1.4899189},
journal = {AIP Advances},
number = 10,
volume = 4,
place = {United States},
year = {Wed Oct 15 00:00:00 EDT 2014},
month = {Wed Oct 15 00:00:00 EDT 2014}
}
  • A model of the negative bias illumination stress instability in InGaZn oxide is presented, based on the photo-excitation of electrons from oxygen interstitials. The O interstitials are present to compensate hydrogen donors. The O interstitials are found to spontaneously form in O-rich conditions for Fermi energies at the conduction band edge, much more easily that in related oxides. The excited electrons give rise to a persistent photoconductivity due to an energy barrier to recombination. The formation energy of the O interstitials varies with their separation from the H donors, which leads to a voltage stress dependence on the compensation.
  • To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less
  • Surface-textured InGaN/GaN light-emitting diodes (LEDs) coated with transparent Al{sub 2}O{sub 3} powder were fabricated by natural lithography combined with inductively coupled plasma etching. For surface texturing, 300 nm size Al{sub 2}O{sub 3} powder is used as an etching mask by simply coating the surface using a spin-coating process. Also, the powders are left on the surface after surface texturing to further increase extraction efficiency. At 20 mA, the light output power of the textured indium tin oxide (ITO) InGaN/GaN LEDs coated with the Al{sub 2}O{sub 3} powder is enhanced by {approx}112% compared with the conventional nontextured ITO LED. The enhancedmore » light output power is attributed to the improved extraction efficiency resulting from an overall decrease in the total internal reflection due to the textured surface and the Al{sub 2}O{sub 3} powder coating.« less
  • Amorphous titanium oxide (a-TiO{sub x}:OH) films prepared by plasma-enhanced chemical-vapor deposition at 200 and 25 deg. C are in turn deposited onto the GaN-based light-emitting diode (LED) to enhance the associated light extraction efficiency. The refractive index, porosity, and photocatalytic effect of the deposited films are correlated strongly with the deposition temperatures. The efficiency is enhanced by a factor of {approx}1.31 over that of the uncoated LEDs and exhibited an excellent photocatalytic property after an external UV light irradiation. The increase in the light extraction is related to the reduction in the Fresnel transmission loss and the enhancement of themore » light scattering into the escape cone by using the graded-refractive-index a-TiO{sub x}:OH film with porous structures.« less
  • Bipolar ac stress-induced instability of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors is comparatively investigated with that under a positive dc gate bias stress. While the positive dc gate bias stress-induced threshold voltage shift ({delta}V{sub T}) is caused by the charge trapping into the interface/gate dielectric as reported in previous works, the dominant mechanism of the ac stress-induced {delta}V{sub T} is observed to be due to the increase in the acceptorlike deep states of the density of states (DOS) in the a-IGZO active layer. Furthermore, it is found that the variation of deep states in the DOS makes a parallel shiftmore » in the I{sub DS}-V{sub GS} curve with an insignificant change in the subthreshold slope, as well as the deformation of the C{sub G}-V{sub G} curves.« less