skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrical property and characterization of nano-SnO{sub 2}/wollastonite composite materials

Journal Article · · Materials Research Bulletin
 [1]; ;  [2];  [1]
  1. School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China)
  2. Qinhuangdao Glass Research Design Institute, Qinhuangdao 066000 (China)

Graphical abstract: Resistivity as a function of different factors: hydrolysis temperature and time. Highlights: ► We have synthesized nano-tin oxide deposited on the surface of wollastonite. ► The antistatic properties were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. ► The results showed that the nano-SnO{sub 2}/wollastonite composite materials showed better antistatic properties. ► The surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains. - Abstract: Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO{sub 2}/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO{sub 2} coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO{sub 2}/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 10{sup 4} Ω cm to 2.533 × 10{sup 3} Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO{sub 2} nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated that there were a large number of the hydroxyl groups on the surface of wollastonite. This is beneficial to the heterogeneous nucleation reaction. Through morphology, EDS and XPS analysis, the surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains the distribution of which was uniform.

OSTI ID:
22290375
Journal Information:
Materials Research Bulletin, Vol. 48, Issue 3; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English