skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of annealing on the temperature dependence of inelastic tunneling contributions vis-à-vis tunneling magnetoresistance and barrier parameters in CoFe/MgO/NiFe magnetic tunnel junctions

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4866078· OSTI ID:22278016
;  [1]
  1. Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi-110 016 (India)

The effect of annealing on the changes in the inelastic tunneling contributions in tunneling conductance of ion beam sputtered CoFe/MgO/NiFe magnetic tunnel junctions (MTJs) is investigated. The inelastic contributions are evaluated using hopping conduction model of Glazman and Matveev in the temperature range of 25–300 K. The hopping through number of series of localized states present in the barrier due to structural defects increases from 9 (in as deposited MTJ) to 18 after annealing (at 200 °C/1 h); although no changes in the interface roughness of CoFe-MgO and MgO-NiFe interfaces are observed as revealed by the x-ray reflectance studies on planar MTJs. The bias dependence of tunneling magnetoresistance (TMR) at 25 K is found to get improved after annealing as revealed by the value V{sub 1/2} (the bias value at which the TMR reaches to half of its value at nearly zero bias); which is 78 mV (in MTJ annealed at 200 °C/1 h) 2.5 times the value of 33 mV (in as deposited MTJ). At 25 K the inelastic tunneling spectra revealed the presence of zero bias anomaly and magnon excitations in the range of 10–15 mV. While the barrier height exhibited a strong temperature dependence with nearly 100% increase from the value at 300 K to 25 K, the temperature dependence of TMR becomes steep after annealing.

OSTI ID:
22278016
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English