skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunnel optical radiation in In{sub x}Ga{sub 1−x}N

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4865658· OSTI ID:22263706
;  [1]
  1. Semiconductor Research Laboratory, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B5E1 (Canada)

An investigation of tunnel optical radiation in epitaxial layers of n-type In{sub x}Ga{sub 1−x}N grown on p-type GaN by novel plasma based migration enhanced epitaxy is presented. Experimental results of electro-luminescence spectra for In{sub x}Ga{sub 1−x}N/p−GaN hetero-junctions were obtained and they show two well expressed optical bands - one in range 500-540 nm and other in range 550-610 nm. An interesting detail is that each band begins and ends by sharp drops of the radiation, which nearly approach zero. A theoretical investigation of the unusual behavior of these spectra was done using LCAO electron band structure calculations. The optical ranges of these bands show that the radiation occurs in the In{sub x}Ga{sub 1−x}N region. In fact, substitutions of In atoms in Ga sites creates defects in the structure of In{sub x}Ga{sub 1−x}N and the corresponding LCAO matrix elements are found on this basis. The LCAO electron band structures are calculated considering the interactions between nearest-neighbor orbitals. Electron energy pockets are found in both the conduction and the valence bands at the Γ point of the electron band structures. Also it is found that these pockets are separated by distances, for which there is overlapping between the electron wave functions describing localized states belonging to the pockets, and as a result tunnel optical radiation can take place. This type of electron transition - between such a pocket in the conduction band and a pocket in the valence band - occurs in In{sub x}Ga{sub 1−x}N, causing the above described optical bands. This conclusion concurs with the fact that the shapes of these bands change with change of the applied voltage.

OSTI ID:
22263706
Journal Information:
AIP Conference Proceedings, Vol. 1583, Issue 1; Conference: ICDS-2013: 27. international conference on defects in semiconductors, Bologna (Italy), 21-26 Jul 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English