skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural and photovoltaic properties of a-Si (SNc)/c-Si heterojunction fabricated by EBPVD technique

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4849248· OSTI ID:22261686
; ;  [1];  [2]
  1. Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey)
  2. Faculty of Arts and Sciences, Department of Physics, Namık Kemal University, Değirmenaltı, Tekirdağ (Turkey)

In last two decades sculptured thin films are very attractive for researches. Some properties of these thin films, like high porosity correspondingly high large surface area, controlled morphology; bring into prominence on them. Sculptured thin films have wide application areas as electronics, optics, mechanics, magnetic and chemistry. Slanted nano-columnar (SnC) thin films are a type of sculptured thin films. In this investigation SnC thin films were growth on n-type crystalline Si(100) and p-type crystalline Si(111) via ultra-high vacuum electron beam evaporation technique. The structural and morphological properties of the amorphous silicon thin films were investigated by XRD, Raman and FE-SEM analysis. According to the XRD and Raman analysis the structure of thin film was amorphous and FE-SEM analysis indicated slanted nano-columns were formed smoothly. Slanted nano-columns a-Si/c-Si heterojunction were prepared as using a photovoltaic device. In this regard we were researched photovoltaic properties of these heterojunction with current-voltage characterization under dark and illumination conditions. Electrical parameters were determined from the current-voltage characteristic in the dark conditions zero-bias barrier height Φ{sub B0} = 0.83−1.00eV; diode ideality factor η = 11.71−10.73; series resistance R{sub s} = 260−31.1 kΩ and shunt resistance R{sub sh} = 25.71−63.5 MΩ SnC a-Si/n-Si and SnC a-Si/p-Si heterojunctions shows a pretty good photovoltaic behavior about 10{sup 3}- 10{sup 4} times. The obtained photovoltaic parameters are such as short circuit current density J{sub sc} 83-40 mA/m{sup 2}, open circuit voltage V{sub oc} 900-831 mV.

OSTI ID:
22261686
Journal Information:
AIP Conference Proceedings, Vol. 1569, Issue 1; Conference: 3. international advances in applied physics and materials science congress, Antalya (Turkey), 24-28 Apr 2013; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English