Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations
Journal Article
·
· Journal of Chemical Physics
The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.
- OSTI ID:
- 22253222
- Journal Information:
- Journal of Chemical Physics, Journal Name: Journal of Chemical Physics Journal Issue: 24 Vol. 139; ISSN JCPSA6; ISSN 0021-9606
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dispersion potential between three-bodies with arbitrary electric multipole polarizabilities: Molecular QED theory
Long-range potentials, including retardation, for the interaction of two alkali-metal atoms
Multipole (E1, M1, E2, M2, E3, M3) transition wavelengths and rates between 3l-15l' excited and ground states in nickel-like ions
Journal Article
·
Mon Jan 27 23:00:00 EST 2014
· Journal of Chemical Physics
·
OSTI ID:22255197
Long-range potentials, including retardation, for the interaction of two alkali-metal atoms
Journal Article
·
Sat Oct 01 00:00:00 EDT 1994
· Physical Review A; (United States)
·
OSTI ID:7032538
Multipole (E1, M1, E2, M2, E3, M3) transition wavelengths and rates between 3l-15l' excited and ground states in nickel-like ions
Journal Article
·
Thu May 04 00:00:00 EDT 2006
· Journal of Physics B, vol. 39, N/A, November 30, 2005, pp. 4491-4513
·
OSTI ID:903440