skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Best-estimate plus uncertainty thermal-hydraulic stability analysis of BWRs using TRACG code

Abstract

Over the last decade, Boiling Water Reactor (BWR) power up-rates have increased plant rated power output significantly. Subsequent projects have expanded flow domains (e.g. MELLLA+) for operation at these higher power levels. This has resulted in an increase in the power to flow ratio in regions susceptible to reactor thermal-hydraulic instabilities. Since BWRs are susceptible to coupled thermal-hydraulic/nuclear oscillations when operating at these conditions, such oscillations must be prevented or reliably detected and suppressed. The Detect and Suppress Solution - Confirmation Density (DSS-CD) is the most sophisticated GEH BWR instability protection system ever employed. DSS-CD implements algorithms that monitor closely-spaced groups of Local Power Range Monitor (LPRM) detectors to detect periodic behavior typical of reactor instability events. This system is able to detect small, localized power variations in the core, distinguish between true instabilities and plant noise, and trip/scram the reactor while maintaining adequate safety margins. The combination of hardware, software, and system setpoints provides protection against violation of the Safety Limit Minimum Critical Power Ratio (SLMCPR) for anticipated oscillations. To support DSS-CD implementation, the TRACG system code is used to simulate events to confirm the capability of the DSS-CD solution for early oscillation detection and suppression. TRACG is amore » GEH proprietary version of the Transient Reactor Analysis Code (TRAC). TRACG includes a multi-dimensional, two-fluid model for the reactor thermal-hydraulics and a three-dimensional reactor kinetics model. The models are qualified to simulate a large variety of tests and reactor configurations, including thermal-hydraulic stability events. These features allow for detailed, best-estimate simulation of a wide range of BWR phenomena. A set of integrated TRACG event simulations for reasonably limiting anticipated events can be used to calculate the effect on the Minimum Critical Power Ratio (MCPR) performance. The purpose of the DSS-CD TRACG analysis is to confirm the inherent MCPR margin afforded by the solution design. This paper presents the Best Estimate Plus Uncertainty (BEPU) DSS-CD TRACG methodology and its application to BWR Thermal-Hydraulic (T-H) stability analyses. The statistical Code Scaling, Applicability and Uncertainty (CSAU) methodology (defined in NUREG/CR-5249) is used to calculate the MCPR uncertainty. The TRACG simulation includes a full core individual bundle model in which each fuel bundle is modeled as an individual T-H channel. The complete CSAU analysis of full core individual bundle model is an innovative solution represents the state-of-the-art stability analysis of BWRs and is the first ever full statistical analysis for stability safety analyses. The adoption of BEPU methodologies for stability analyses advances the understanding of the associated physical phenomena and maintains the safety of reactor plant operation in expanded operation domain with up-rated power. (authors)« less

Authors:
; ; ; ;  [1]
  1. GE Hitachi Nuclear Energy Americas, 3901 Castle Hayne, Wilmington, NC 28401 (United States)
Publication Date:
Research Org.:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI Identifier:
22107792
Resource Type:
Conference
Resource Relation:
Conference: ICAPP '12: 2012 International Congress on Advances in Nuclear Power Plants, Chicago, IL (United States), 24-28 Jun 2012; Other Information: Country of input: France; 19 refs.; Related Information: In: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants - ICAPP '12| 2799 p.
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 97 MATHEMATICAL METHODS AND COMPUTING; ALGORITHMS; BWR TYPE REACTORS; COMPUTER CODES; DATA COVARIANCES; FUEL ELEMENT CLUSTERS; INSTABILITY; OPERATION; OSCILLATIONS; PERIODICITY; POWER RANGE; REACTOR KINETICS; REACTOR SAFETY; SAFETY ANALYSIS; SAFETY MARGINS; SCRAM; SIMULATION; THERMAL HYDRAULICS; THREE-DIMENSIONAL CALCULATIONS; TWO-PHASE FLOW

Citation Formats

Vedovi, J., Yang, J., Klebanov, L., Vreeland, D. G., and Zino, J. F. Best-estimate plus uncertainty thermal-hydraulic stability analysis of BWRs using TRACG code. United States: N. p., 2012. Web.
Vedovi, J., Yang, J., Klebanov, L., Vreeland, D. G., & Zino, J. F. Best-estimate plus uncertainty thermal-hydraulic stability analysis of BWRs using TRACG code. United States.
Vedovi, J., Yang, J., Klebanov, L., Vreeland, D. G., and Zino, J. F. 2012. "Best-estimate plus uncertainty thermal-hydraulic stability analysis of BWRs using TRACG code". United States.
@article{osti_22107792,
title = {Best-estimate plus uncertainty thermal-hydraulic stability analysis of BWRs using TRACG code},
author = {Vedovi, J. and Yang, J. and Klebanov, L. and Vreeland, D. G. and Zino, J. F.},
abstractNote = {Over the last decade, Boiling Water Reactor (BWR) power up-rates have increased plant rated power output significantly. Subsequent projects have expanded flow domains (e.g. MELLLA+) for operation at these higher power levels. This has resulted in an increase in the power to flow ratio in regions susceptible to reactor thermal-hydraulic instabilities. Since BWRs are susceptible to coupled thermal-hydraulic/nuclear oscillations when operating at these conditions, such oscillations must be prevented or reliably detected and suppressed. The Detect and Suppress Solution - Confirmation Density (DSS-CD) is the most sophisticated GEH BWR instability protection system ever employed. DSS-CD implements algorithms that monitor closely-spaced groups of Local Power Range Monitor (LPRM) detectors to detect periodic behavior typical of reactor instability events. This system is able to detect small, localized power variations in the core, distinguish between true instabilities and plant noise, and trip/scram the reactor while maintaining adequate safety margins. The combination of hardware, software, and system setpoints provides protection against violation of the Safety Limit Minimum Critical Power Ratio (SLMCPR) for anticipated oscillations. To support DSS-CD implementation, the TRACG system code is used to simulate events to confirm the capability of the DSS-CD solution for early oscillation detection and suppression. TRACG is a GEH proprietary version of the Transient Reactor Analysis Code (TRAC). TRACG includes a multi-dimensional, two-fluid model for the reactor thermal-hydraulics and a three-dimensional reactor kinetics model. The models are qualified to simulate a large variety of tests and reactor configurations, including thermal-hydraulic stability events. These features allow for detailed, best-estimate simulation of a wide range of BWR phenomena. A set of integrated TRACG event simulations for reasonably limiting anticipated events can be used to calculate the effect on the Minimum Critical Power Ratio (MCPR) performance. The purpose of the DSS-CD TRACG analysis is to confirm the inherent MCPR margin afforded by the solution design. This paper presents the Best Estimate Plus Uncertainty (BEPU) DSS-CD TRACG methodology and its application to BWR Thermal-Hydraulic (T-H) stability analyses. The statistical Code Scaling, Applicability and Uncertainty (CSAU) methodology (defined in NUREG/CR-5249) is used to calculate the MCPR uncertainty. The TRACG simulation includes a full core individual bundle model in which each fuel bundle is modeled as an individual T-H channel. The complete CSAU analysis of full core individual bundle model is an innovative solution represents the state-of-the-art stability analysis of BWRs and is the first ever full statistical analysis for stability safety analyses. The adoption of BEPU methodologies for stability analyses advances the understanding of the associated physical phenomena and maintains the safety of reactor plant operation in expanded operation domain with up-rated power. (authors)},
doi = {},
url = {https://www.osti.gov/biblio/22107792}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jul 01 00:00:00 EDT 2012},
month = {Sun Jul 01 00:00:00 EDT 2012}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: