skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of BWR OPRM plant data and detection algorithms with DSSPP

Conference ·
OSTI ID:22107861
; ; ;  [1]
  1. GE Hitachi Nuclear Energy Americas, 3901 Castle Hayne, Wilmington, NC 28401 (United States)

All U.S. BWRs are required to have licensed stability solutions that satisfy General Design Criteria (GDC) 10 and 12 of 10 CFR 50 Appendix A. Implemented solutions are either detect and suppress or preventive in nature. Detection and suppression of power oscillations is accomplished by specialized hardware and software such as the Oscillation Power Range Monitor (OPRM) utilized in Option III and Detect and Suppress Solution - Confirmation Density (DSS-CD) stability Long-Term Solutions (LTSs). The detection algorithms are designed to recognize a Thermal-Hydraulic Instability (THI) event and initiate control rod insertion before the power oscillations increase much higher above the noise level that may threaten the fuel integrity. Option III is the most widely used long-term stability solution in the US and has more than 200 reactor years of operational history. DSS-CD represents an evolutionary step from the stability LTS Option III and its licensed domain envelopes the Maximum Extended Load Line Limit Analysis Plus (MELLLA +) domain. In order to enhance the capability to investigate the sensitivity of key parameters of stability detection algorithms, GEH has developed a new engineering analysis code, namely DSSPP (Detect and Suppress Solution Post Processor), which is introduced in this paper. The DSSPP analysis tool represents a major advancement in the method for diagnosing the design of stability detection algorithms that enables designers to perform parametric studies of the key parameters relevant for THI events and to fine tune these system parameters such that a potential spurious scram might be avoided. Demonstrations of DSSPPs application are also presented in this paper utilizing actual plant THI data. A BWR/6 plant had a plant transient that included unplanned recirculation pump transfer from fast to slow speed resulting in about 100% to {approx}40% rated power decrease and about 99% to {approx}30% rated core flow decrease. As the feedwater temperature is reduced to equilibrium conditions, the power increased from about {approx}40% to about {approx}60% with little change inflow. A THI event developed and subsequently, an OPRM initiated scram occurred with Option III. (authors)

Research Organization:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI ID:
22107861
Resource Relation:
Conference: ICAPP '12: 2012 International Congress on Advances in Nuclear Power Plants, Chicago, IL (United States), 24-28 Jun 2012; Other Information: Country of input: France; 4 refs.; Related Information: In: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants - ICAPP '12| 2799 p.
Country of Publication:
United States
Language:
English