skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Donor behavior of Sb in ZnO

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4742984· OSTI ID:22089377
; ; ; ;  [1]; ; ;  [2]
  1. Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)
  2. Department of Materials Science and Engineering, University Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

Electrical behavior of Sb in ZnO:Sb layers doped in a wide concentration range was studied using temperature dependent Hall effect measurements. The layers were grown by plasma-enhanced molecular beam epitaxy, and the Sb concentration was changed by varying the Sb flux, resulting in electron concentrations in the range of 10{sup 16} to nearly 10{sup 20} cm{sup -3}. Upon annealing, the electron concentration increased slightly and more notable was that the electron mobility significantly improved, reaching a room-temperature value of 110 cm{sup 2}/V s and a low-temperature value of 145 cm{sup 2}/V s, close to the maximum of {approx}155 cm{sup 2}/V s set by ionized impurity scattering. Hall data and structural data suggest that Sb predominantly occupies Zn sublattice positions and acts as a shallow donor in the whole concentration range studied. In the layers with high Sb content ({approx}1 at. %), acceptor-type compensating defects (possibly Sb on oxygen sites and/or point-defect complexes involving Sb{sub O}) are formed. The increase of electron concentration with increasing oxygen pressure and the increase in ZnO:Sb lattice parameter at high Sb concentrations suggest that acceptors involving Sb{sub O} rather than Sb{sub Zn}-2V{sub Zn} complexes are responsible for the compensation of the donors.

OSTI ID:
22089377
Journal Information:
Journal of Applied Physics, Vol. 112, Issue 3; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English