skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Particle-in-cell simulations of particle energization from low Mach number fast mode shocks

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4729913· OSTI ID:22072478
;  [1];  [1];  [1];  [1]
  1. Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States)

Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation of the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfven Mach number M{sub A}=6.8 and ratio of thermal to magnetic pressure {beta}=8. We determine the respective minimum energies required for electrons and ions to incur SDA. We derive a theoretical electron distribution via SDA that compares to the simulation results. We also show that a modified two-stream instability due to the incoming and reflecting ions in the shock transition region acts as the mechanism to generate collisionless plasma turbulence that sustains the shock.

OSTI ID:
22072478
Journal Information:
Physics of Plasmas, Vol. 19, Issue 6; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English