skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural, electrical, and optical properties of antimony-doped tin oxide films prepared at room temperature by radio frequency magnetron sputtering for transparent electrodes

Journal Article · · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films
DOI:https://doi.org/10.1116/1.3139891· OSTI ID:22053520
; ;  [1]
  1. School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

Antimony-doped tin oxide (ATO) films were prepared on 7059 Corning glass substrate by the radio frequency (rf) magnetron sputtering method using SnO{sub 2} target mixed with Sb of 6 wt % at room temperature. The working pressure was varied from 0.67 to 2 Pa in steps of 0.67 Pa, and the rf power was varied from 100 to 175 W in steps of 25 W at room temperature. The thickness of the deposited ATO films was about 150 nm. X-ray diffraction (XRD) measurements showed the ATO films to be crystallized with a strong (101) preferred orientation as the rf power is increased. The spectra revealed that the deposited films were polycrystalline, retaining the tetragonal structure. The grain size was estimated from the XRD spectra using the Scherrer equation and found to decrease with a decrease in the working pressure and an increase in the rf power, while the surface roughness was observed to be smoothened. The ATO film that was deposited at a working pressure of 0.67 Pa with rf power of 175 W showed the lowest resistivity of 8.6x10{sup -3} {Omega} cm, and the optical transmittance was 86.5% in the visible wavelength range from 400 to 800 nm.

OSTI ID:
22053520
Journal Information:
Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films, Vol. 27, Issue 4; Other Information: (c) 2009 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1553-1813
Country of Publication:
United States
Language:
English