skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-self-sustained glow discharge with electrostatic confinement of electrons sustained by a fast neutral molecule beam

Journal Article · · Plasma Physics Reports
;  [1]
  1. Moscow State University of Technology 'Stankin' (Russian Federation)

Experimental study of plasma produced at the nitrogen pressure 0.2-1 Pa in the chamber volume V Almost-Equal-To 0.12 m{sup 3} as a result of injection into the chamber of a broad nitrogen molecule beam with 1-4 keV energy and 0.1-1 A equivalent current is carried out, and the study results are presented. Dependences of the plasma density distribution on the beam equivalent current I{sub b}, energy E{sub b}, and gas pressure p indicate a crucial role of fast molecules in gas ionization, and the probe characteristics reveal two groups of plasma electrons with the temperatures T{sub e} {approx} 0.4 eV and T{sub e} {approx} 16 eV. Immersion in plasma of an electrode isolated from the chamber and application to the electrode of a positive voltage U result in non-self-sustained discharge. When U changes from {approx}0.5 to {approx}1.5 V, the discharge current I rapidly rises to a certain value I*, and after that the rate of rise dI/dU drops by an order of magnitude. At U {approx} 10 V, the current I rises to I{sub 0} Almost-Equal-To 1.5I*, and dI/dU once again drops by an order of magnitude. Current I{sub 0} specifies the number of electrons produced inside the chamber per second, and it grows up with E{sub b}, I{sub b}, and p. At U > 20 V, due to gas ionization by fast electrons emitted by the chamber and accelerated up to the energy {approx}eU in the sheath between the plasma and the chamber walls, the current I rises again. When U grows up to {approx}50 V, production of fast electrons with energies exceeding the ionization threshold begins inside the sheath, and the ionization intensity rises dramatically. At U > 150 V, contribution of fast electrons to gas ionization already exceeds the contribution of fast molecules, and the plasma density and its distribution homogeneity inside the chamber both grow up substantially. However, even in this case, the discharge is non-self-sustained, and only at U > 300 V it does not expire when the beam source is switched off.

OSTI ID:
22047536
Journal Information:
Plasma Physics Reports, Vol. 37, Issue 4; Other Information: Copyright (c) 2011 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-780X
Country of Publication:
United States
Language:
English

Similar Records

Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge
Journal Article · Tue Dec 15 00:00:00 EST 2009 · Plasma Physics Reports · OSTI ID:22047536

Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma
Journal Article · Thu Mar 15 00:00:00 EDT 2012 · Plasma Physics Reports · OSTI ID:22047536

Studies of Impurity Assimilation During Massive Argon Gas Injection in DIII-D
Journal Article · Wed Jun 27 00:00:00 EDT 2007 · Proceedings of the 34th EPS Conference on Plasma Physics, vol. 31F, na, July 2, 2007, P1.128 · OSTI ID:22047536