skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

Journal Article · · Journal of Solid State Chemistry
 [1]; ; ; ;  [1]
  1. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO{sub 2}) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 Degree-Sign C) do not show significant activity under our conditions, while the one annealed at 450 Degree-Sign C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: Black-Right-Pointing-Pointer Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. Black-Right-Pointing-Pointer Titania crystal is formed by annealing hydrogen titanate at different temperatures. Black-Right-Pointing-Pointer Best visible-light activity is achieved by Ag-loaded titania annealed at 450 Degree-Sign C. Black-Right-Pointing-Pointer The visible light activity is attributed to the surface plasmonic resonance effect.

OSTI ID:
22012115
Journal Information:
Journal of Solid State Chemistry, Vol. . 189; Conference: 6. international conference on materials for advanced technologies,, Singapore (Singapore), 26 Jun - 1 Jul 2011; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English