Single Material Band Gap Engineering in GaAs Nanowires
Journal Article
·
· AIP Conference Proceedings
- Walter Schottky Institut, Technische Universitaet Muenchen, 85748, Garching (Germany)
- Naval Research Laboratory, Washington, DC 20375 (United States)
- Departament d'Electronica, Universitat de Barcelona, 08028 Barcelona, CAT (Spain)
- ICREA Research Professor at Institut de Ciencia de Materials de Barcelona, CSIC, 08193 Bellaterra, CAT (Spain)
The structural and optical properties of GaAs nanowire with mixed zinc-blende/wurtzite structure are presented. High resolution transmission electron microscopy indicates the presence of a variety of shorter and longer segments of zinc-blende or wurtzite crystal phases. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV. The downward shift of the emission peaks can be understood by carrier confinement at the wurtzite/zinc-blende heterojunction, in quantum wells and in random short period superlattices existent in these nanowires, assuming the theoretical staggered band-offset between wurtzite and zinc-blende GaAs.
- OSTI ID:
- 21612421
- Journal Information:
- AIP Conference Proceedings, Journal Name: AIP Conference Proceedings Journal Issue: 1 Vol. 1399; ISSN APCPCS; ISSN 0094-243X
- Country of Publication:
- United States
- Language:
- English
Similar Records
Structural and optical characterization of Mg-doped GaAs nanowires grown on GaAs and Si substrates
Photocurrent Spectroscopy of Single Wurtzite GaAs Nanowires
Optical properties of single wurtzite/zinc-blende ZnSe nanowires grown at low temperature
Journal Article
·
Wed Nov 13 23:00:00 EST 2013
· Journal of Applied Physics
·
OSTI ID:22259297
Photocurrent Spectroscopy of Single Wurtzite GaAs Nanowires
Journal Article
·
Thu Dec 22 23:00:00 EST 2011
· AIP Conference Proceedings
·
OSTI ID:21612405
Optical properties of single wurtzite/zinc-blende ZnSe nanowires grown at low temperature
Journal Article
·
Mon Sep 07 00:00:00 EDT 2015
· Journal of Applied Physics
·
OSTI ID:22494842
Related Subjects
75 CONDENSED MATTER PHYSICS
SUPERCONDUCTIVITY AND SUPERFLUIDITY
77 NANOSCIENCE AND NANOTECHNOLOGY
ARSENIC COMPOUNDS
ARSENIDES
BAND THEORY
CHALCOGENIDES
CHARGE CARRIERS
CRYSTAL GROWTH
CRYSTAL GROWTH METHODS
CRYSTAL LATTICES
CRYSTAL STRUCTURE
CRYSTALS
CUBIC LATTICES
ELECTRON MICROSCOPY
EMISSION
ENERGY GAP
ENERGY RANGE
EPITAXY
EV RANGE
GALLIUM ARSENIDES
GALLIUM COMPOUNDS
HETEROJUNCTIONS
INORGANIC PHOSPHORS
LUMINESCENCE
MICROSCOPY
MOLECULAR BEAM EPITAXY
NANOSTRUCTURES
OPTICAL PROPERTIES
PHOSPHORS
PHOTOLUMINESCENCE
PHOTON EMISSION
PHYSICAL PROPERTIES
PNICTIDES
QUANTUM WELLS
QUANTUM WIRES
SEMICONDUCTOR JUNCTIONS
SULFIDES
SULFUR COMPOUNDS
SUPERLATTICES
TRANSMISSION ELECTRON MICROSCOPY
ZINC COMPOUNDS
ZINC SULFIDES
SUPERCONDUCTIVITY AND SUPERFLUIDITY
77 NANOSCIENCE AND NANOTECHNOLOGY
ARSENIC COMPOUNDS
ARSENIDES
BAND THEORY
CHALCOGENIDES
CHARGE CARRIERS
CRYSTAL GROWTH
CRYSTAL GROWTH METHODS
CRYSTAL LATTICES
CRYSTAL STRUCTURE
CRYSTALS
CUBIC LATTICES
ELECTRON MICROSCOPY
EMISSION
ENERGY GAP
ENERGY RANGE
EPITAXY
EV RANGE
GALLIUM ARSENIDES
GALLIUM COMPOUNDS
HETEROJUNCTIONS
INORGANIC PHOSPHORS
LUMINESCENCE
MICROSCOPY
MOLECULAR BEAM EPITAXY
NANOSTRUCTURES
OPTICAL PROPERTIES
PHOSPHORS
PHOTOLUMINESCENCE
PHOTON EMISSION
PHYSICAL PROPERTIES
PNICTIDES
QUANTUM WELLS
QUANTUM WIRES
SEMICONDUCTOR JUNCTIONS
SULFIDES
SULFUR COMPOUNDS
SUPERLATTICES
TRANSMISSION ELECTRON MICROSCOPY
ZINC COMPOUNDS
ZINC SULFIDES