skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 7D-folding integral in a density-dependent microscopic optical model potential for nucleon-nucleus scattering

Journal Article · · Physical Review. C, Nuclear Physics
 [1];  [2]
  1. Department of Physics-FCFM, University of Chile, Av. Blanco Encalada 2008, Santiago (Chile)
  2. CEA/DAM/DIF, F-91297 Arpajon (France)

Microscopic optical model potentials, based on density-dependent effective interactions, involve multidimensional integrals to account for the full Fermi motion of the target struck nucleon throughout the nucleus. If a spherical matter distribution is assumed, then each matrix element of the optical potential requires the evaluation of seven-dimensional integrals. In this work we provide a full account of these integrals, retaining the genuine off-shell structure of the nucleon-nucleon effective interaction. The evaluation is based on the asymptotic separation of the optical model potential for nucleon-nucleus scattering in momentum space, where the potential is split into a free t-matrix contribution and another which depends exclusively on the gradient of the density-dependent g matrix. The calculated potentials, based on the Paris nucleon-nucleon (NN) potential, are applied to proton elastic scattering from {sup 16}O and {sup 90}Zr at beam energies between 30 and 65 MeV. The results were compared with two approximations to the unabridged expression, revealing moderate differences among their scattering observables. When comparing with results based on the Argonne v{sub 18} NNpotential, these differences appear smaller than those attainable by the choice of the internucleon potential.

OSTI ID:
21596757
Journal Information:
Physical Review. C, Nuclear Physics, Vol. 84, Issue 3; Other Information: DOI: 10.1103/PhysRevC.84.034606; (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2813
Country of Publication:
United States
Language:
English