skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wave propagation and noncollisional heating in neutral loop and helicon discharges

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.3551758· OSTI ID:21535145
; ; ;  [1];  [2];  [3]
  1. Institute for Plasma and Atomic Physics, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum (Germany)
  2. Plasma Nanotechnology Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)
  3. Department of Electronics and Information Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501 (Japan)

Heating mechanisms in two types of magnetized low pressure rf (13.56 MHz) discharges are investigated: a helicon discharge and a neutral loop discharge. Radial B-dot probe measurements demonstrate that the neutral loop discharge is sustained by helicon waves as well. Axial B-dot probe measurements reveal standing wave and beat patterns depending on the dc magnetic field strength and plasma density. In modes showing a strong wave damping, the plasma refractive index attains values around 100, leading to electron-wave interactions. In strongly damped modes, the radial plasma density profiles are mainly determined by power absorption of the propagating helicon wave, whereas in weakly damped modes, inductive coupling dominates. Furthermore, an azimuthal diamagnetic drift is identified. Measurements of the helicon wave phase demonstrate that initial plane wave fronts are bent during their axial propagation due to the inhomogeneous density profile. A developed analytical standing wave model including Landau damping reproduces very well the damping of the axial helicon wave field. This comparison underlines the theory whereupon Landau damping of electrons traveling along the field lines at speeds close to the helicon phase velocity is the main damping mechanism in both discharges.

OSTI ID:
21535145
Journal Information:
Physics of Plasmas, Vol. 18, Issue 2; Other Information: DOI: 10.1063/1.3551758; (c) 2011 American Institute of Physics; ISSN 1070-664X
Country of Publication:
United States
Language:
English

Similar Records

Observation of low magnetic field density peaks in helicon plasma
Journal Article · Mon Apr 15 00:00:00 EDT 2013 · Physics of Plasmas · OSTI ID:21535145

Helicon plasma source excited by a flat spiral coil
Journal Article · Fri Sep 01 00:00:00 EDT 1995 · Journal of Vacuum Science and Technology, A · OSTI ID:21535145

Understanding helicon plasmas
Journal Article · Sun Jul 15 00:00:00 EDT 2012 · Physics of Plasmas · OSTI ID:21535145