Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Knowledge fusion: Time series modeling followed by pattern recognition applied to unusual sections of background data

Technical Report ·
DOI:https://doi.org/10.2172/215313· OSTI ID:215313

This report describes work performed during FY 95 for the Knowledge Fusion Project, which by the Department of Energy, Office of Nonproliferation and National Security. The project team selected satellite sensor data as the one main example to which its analysis algorithms would be applied. The specific sensor-fusion problem has many generic features that make it a worthwhile problem to attempt to solve in a general way. The generic problem is to recognize events of interest from multiple time series in a possibly noisy background. By implementing a suite of time series modeling and forecasting methods and using well-chosen alarm criteria, we reduce the number of false alarms. We then further reduce the number of false alarms by analyzing all suspicious sections of data, as judged by the alarm criteria, with pattern recognition methods. This report describes the implementation and application of this two-step process for separating events from unusual background. As a fortunate by-product of this activity, it is possible to gain a better understanding of the natural background.

Research Organization:
Los Alamos National Lab., NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
215313
Report Number(s):
LA--13075-MS; ON: DE96008300
Country of Publication:
United States
Language:
English