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Executive Summary

This report describes work performed during FY 95 for the Knowledge Fusion Project, which
was sponsored by the Department of Energy, Office of Nonproliferation and National Security.
The project team selected satellite sensor data as the one main example to which its analysis algo-
rithms would be applied. The specific sensor-fusion problem has many generic features that make
it a worthwhile problem to attempt to solve in a general way. The generic problem is to recognize
events of interest from multiple time series in a possibly noisy background. By implementing a
suite of time series modeling and forecasting methods and using well-chosen alarm criteria, we
reduce the number of false alarms. We then further reduce the number of false alarms by analyz-
ing all suspicious sections of data, as judged by the alarm criteria, with pattern recognition
methods. This report describes the implementation and application of this two-step process for
separating events from unusual background. As a fortunate by-product of this activity, it is possi-
ble to gain a better understanding of the natural background.

The fundamental principle underlying the DOE/NN-sponsored Knowledge Fusion (KF) project at
Los Alamos is that the technologies of extracting information from huge data sets can best be
developed by cooperation between a team of specialists experienced with the general underlying
computer science and mathematical problems and experts in the design and operation of specific
operational systems. The goal is to solve the specific problems so that the results will be as gener-
ally applicable as possible to new problem domains as they develop. This goal includes the devel-
opment of a computational environment that will insure that all tools developed for tasks such as
parsing, filtering, analyzing, and displaying can be used within a unified environment that encour-
ages easy application to new situations. Results presented here will be primarily from a specific
example problem in which several sensors on satellites are used to detect nuclear weapon explo-
sions. The plan is to solve that particular problem and to solve it in a computational environment
that will permit ready application of the tools developed to new domains. If successful, many
DOE projects will eventually benefit, and a uniform method of collection, storage, and analysis
should emerge as the benefits of using the knowledge fusion team become apparent.

More specifically, this report presents a somewhat detailed application of 12 different time-series
forecasting methods, followed by 7 different pattern recognition methods. One of the 12 forecast-
ing methods and 1 of the 7 pattern recognition methods were written for the KF project. The other
forecasting methods and pattern recognition methods were obtained from commercial software
implementations, as described in Refs. ES-1 and ES-2. It is not possible to give a complete treat-
ment of all of these candidate methods in one document, so this report has two companion reports.
Reference ES-3 gives a detailed comparison of two of the forecasting methods (fuzzy-forecaster
and statistically motivated curve smoothers as forecasters), and Ref. ES-4 gives a detailed discus-
sion of the linear forecasting methods, including vector-valued autoregressive moving average
(ARMA) time series models. Reference ES-4 also gives considerable detail about one pattern rec-
ognition method that was empirically derived from one specific data set. The empirical derivation
is closely related to quadratic discriminant analysis.
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Knowledge Fusion: Time Series Modeling
Followed by Pattern Recognition Applied to
Unusual Sections of Background Data

by

Tom Burr, Justin Doak, Jo Ann Howell, Dave Martinez, and Richard Strittmatter

ABSTRACT

This report describes work during FY 95 that was sponsored by the Department of
Energy, Office of Nonproliferation and National Security, for the Knowledge
Fusion Project. The project team selected satellite sensor data as the one main
example to which its analysis algorithms would be applied. The specific sensor-
fusion problem has many generic features, which make it a worthwhile problem to
attempt to solve in a general way. The generic problem is to recognize events of
interest from multiple time series that define a possibly noisy background. By
implementing a suite of time series modeling and forecasting methods and using
well-chosen alarm criteria, we reduce the number of false alarms. We then further
reduce the number of false alarms by analyzing all suspicious sections of data, as
judged by the alarm criteria, with pattern recognition methods. This report
describes the implementation and application of this two-step process for separat-
ing events from unusual background.

1. Introduction

The fundamental principle underlying the Knowledge Fusion project at Los Alamos, sponsored
by the Department of Energy, Office of Nonproliferation and National Security, is that the tech-
nologies of extracting information from huge data sets can best be developed by cooperation
between a team of specialists experienced with the general underlying computer science and
mathematical problems and experts in the design and operation of specific operational systems.
The goal is to solve the specific problems so that the results will be as generally applicable as pos-
sible to new problem domains as they develop. This goal includes the development of a computa-
tional environment that will insure that all tools developed for tasks such as parsing, filtering,
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analyzing, and displaying can be used within a unified environment that encourages easy applica-
tion to new situations (Ref. 1). Results presented here will be primarily from a specific example in
which several sensors on satellites are used to detect nuclear weapon explosions. The plan is to
solve that particular problem, and to solve it in a computational environment that will permit
ready application of the tools developed to new domains. If successful, many DOE projects will
eventually benefit, and a uniform method of collection, storage, and analysis should emerge as the
benefits of utilizing the knowledge fusion team become apparent.

This report is organized as follows: Section 2 describes the multiple-sensor problem from which
we extrapolate general procedures for data analysis in a particular but common setting, reviews
previous related work on the sensor-fusion problem, and describes our computational environ-
ment. Section 3 covers some specific data-acquisition issues. Section 4 describes analysis meth-
ods for vector-valued time series. Section 5 provides more details about one of the two general
types of specific data sets. These additional details relate to our approach to applying pattern rec-
ognition methods. Also related to our approach to pattern recognition is the choice of forecasting
methods, so in section 5 we compare the results of 12 forecasting methods. Section 6 gives details
about the raw and derived data presented to pattern-recognition algorithms and results of cluster
analysis on some of the data. Section 7 gives pattern-recognition results for seven methods on one
simulated and two real data sets. Section 8 is a summary.

2. The Nudet-Detection Problem

2.1 Background

We emphasize that our intention is not to directly support any project but to solve selected prob-
lems from particular projects that are considered top candidates to appear in many DOE projects.
This report focuses on the following very typical scenario. The most ambitious goal is to use time
series data from multiple sensors to deduce the “state of affairs” during any specified time period.
A more reasonable goal is to try to deduce whether a specified time period contains an event of
interest. In the nudet-detection problem, nudet, a nuclear blast, is the event of interest. In the case
of atmospheric and exo-atmospheric surveillance, we know there can be events such as solar
flares that are not the event of interest, but they are also not ordinary background. We will there-
fore divide the background data into two types: usual and unusual. We further divide “unusual”
background into two types: known and fairly well characterized, such as solar flares, and
unknown. We can now state goal one as:

Use time series data from multiple sensors to label each section of time as
1) ordinary background,
2) unusual background of known type or of unknown type, or

3) section containing the event (nudet) of interest.



Figure 1 shows an overview of our knowledge fusion approach to the nudet-detection application.
It identifies the steps in the analysis that are described in the following sections in more detail.
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FIGURE 1. Knowledge fusion components as they apply to our nudet-detection problem.

To accomplish goal one, we model the ordinary background to set decision thresholds based on
the analysis of data from several sensors. Sections of data that “look unusual” based on decision
thresholds are further analyzed by pattern recognition to separate false alarms from true events.

Information on the specific nudet-detection programs can be found in Ref. 2. To keep this report
self-contained, we also include here the relevant information.

The United States currently uses particle and radiation detectors aboard satellites to monitor the
near-earth environment for clandestine nudets. These satellite-based detectors have access to a
telemetry downlink with large bandwidth, and much of the detector output data is transmitted to a
ground station for recording and analysis. The on-board electronic systems that control the parti-
cle and radiation detectors contain logic elements that can issue alerts and trigger optional record-
ing and data transmission activities when unusual detector signals occur. However, most of the
data analysis and anomaly resolution activities occur only after the detector outputs are received
by the ground station. Therefore, a potential application of our project is to apply knowledge

fusion methods to develop the computational algorithms required for this on-board processing of
detector outputs.




Because most of the detectors of interest generate output values at regular intervals, much of the
analysis of the satellite detector systems can be formulated as a time-series problem involving
multiple time series that have nonzero cross correlations at both zero and nonzero time lags. Con-
sequently, we are evaluating a variety of both standard and innovative analysis methods for time
series to determine their effectiveness in correctly interpreting the detector signals. To evaluate
these algorithms, we must test them on a large quantity of detector output data corresponding both
to natural background processes alone and to natural background processes with a variety of
nudet effects superimposed. Some of that work was completed in 1994 and has been applied dur-
ing 1995. During 1995 we began to add the ability to recognize patterns to all sections of time
series that appear unusual based on some alarm criteria.

About four and one-half years of detector output data from the current generation of satellites is
available on optical disks at Los Alamos National Laboratory. This is an extensive source of
detector response data for natural background processes, covering more than one-third of a sun
spot intensity cycle and including a solar activity maximum. We are using these detector output
databases to generate data sets for developing and testing our time-series algorithms.

Observational data for actual nudet signals superimposed on natural background processes are
much more limited. Several exo-atmospheric nuclear tests were conducted in the HARDTACK,
FISHBOWL, and ARGUS programs in the late 1950s and early 1960s, and detector output
records from these events are available. However, these data cover a fairly small part of the
device-type/detector-location parameter space of interest. In addition, detector designs have
changed somewhat since these early tests were conducted. Accordingly, we are using simulation
models of nudets and of detectors to generate detector responses to a variety of nudet/detector
combinations, and we then add these responses to the background signals from the observational
databases to generate the nudet data sets required to develop and evaluate the time-series meth-
ods. During 1994 we compared our simulated nudet detector signals with the observational results
from the exo-atmospheric tests to assure that the simulation models generate realistic results for
the gamma and neutron signals.

The work described in Ref. 2 restricts attention to four time series: electrons, protons, neutrons,
and gammas. In Ref. 2, we described two new methods to combine information from the gamma
and nentron channels. Forecasting the neutron time series was simple. Forecasting the gamma
series was difficult, and open questions remain about the best way to combine information from
the gamma and neutron sensors. We also worked toward improving the use of charged particles
(electrons and protons) to predict the gammas, but we found that using prior gammas to predict
present gammas worked “better.” Such a statement can only be partly true, and it depends on the
time scales used. See Ref. 2 for more detail, but one key fact is that in Ref. 2 we treated the fore-
cast errors from the neutron series as being independent from the forecast errors from the gamma
series during “ordinary background.” This is based on physical reasoning and was confirmed with
all of the many sections (about ten 1- to 4-hr sections) of ordinary background that we analyzed.




For the work described in this report, we limited attention to three times series—electrons, pro-
tons, and gammas—because using the electrons, protons, and prior gammas to forecast present
gammas is more challenging than forecasting the neutrons, and because as stated in the previous
paragraph, the neutron time series is independent from the gamma time series over periods of
ordinary background. Also, during 1995 we were fortunate to gain access to the higher-resolution
data sets for the electrons, protons, and gammas that are only available when a threshold criterion
has been met. These higher-resolution (more frequent) time series are informally called event
records. The current thinking is that each event record must be explained by a human. We ran-
domly selected 1322 event records to apply pattern recognition to separate them into our three
categories: nudet, ordinary background, and unusual background. We give more detail in

section 6.

To summarize this section, any nudet-detection project requires the use of at least three distinct
and widely applicable analysis methodologies:

1. simulation, including both discrete-event simulation and modeling of physical systems;
2. time series analysis; and

3. pattern recognition methods.

Subsequent sections in this report present more detail about the application of these methodol-
ogies to any nudet-detection program. It is not difficult to envision many more applications of this
general approach. For example, consider nuclear facility monitoring with a central database of
count rates from many sensors. Our two-step procedure is still attractive: (1) apply standard or (if
needed) innovative methods for modeling and forecasting time series so that the background can
be monitored effectively and (2) apply pattern recognition methods to “unusual sections of back-
ground data” to explain the source of the unusual behavior.

2.2 The Computational System

More detail is given in Refs. 1 and 2. We continue to develop the software toolkit called Software
Toolkit for Analysis Research (STAR). During 1995, a module to perform pattern recognition was
added. The pattern-recognition module will be described in the results sections. The goal of the
STAR team is to produce a research tool that facilitates the development and interchange of algo-
rithms for locating nonproliferation phenomena of interest in large quantities of data. Using this
toolkit, nonproliferation researchers will be able to ascertain which existing techniques are the
most promising, develop new and possibly more effective methods, and add/delete algorithms
without major re-design work. Some modules or components of STAR will preprocess incoming
data; some will select the appropriate information for a particular nonproliferation application;
some will analyze data to uncover items of significance to nonproliferation experts; and others
will assess the effectiveness of the various components. Some of the specific techniques
employed by the various modules will be feature selection algorithms, machine learning algo-
rithms, a pure statistical model, and expert system methodologies.



3. Data Issues

3.1 Real Data

Satellite Data Acquisition. A separate document entitled “GEXO Data Acquisition Guide” (Ref.
3) details the exact steps required to obtain one of the two types of the LANL-based satellite data
that we have used. As such, it is both directly relevant to the current application of knowledge
fusion and also serves as an example of a typical, real-data problem. Of course, it most impor-
tantly serves as a practical working document to transfer the ability to retrieve satellite data to
new researchers as required. We refer to the second data type, informally, as the event records.
The procedure to access the event records has changed several times, so we have maintained a
“how to get the data” report that is unpublished but available from D. Martinez or T. Burr.

3.2 Real Data with Nudets

Fortunately, we do not have examples of real data over the last four years of nudets above the
earth’s atmosphere. Therefore, we continue to use the simulation code developed during 1994 to
create artificial nudet effects that we add to sections of real data. The simulation code includes
comprehensive nudet and detector-response modeling, is written in C++, and is accessible in a
user-friendly (menu-based) way from within the STAR framework.

4. Analysis of Vector Time Series

In this section we review modeling of vector time series. See Ref. 2 for additional specific details
and Refs. 4-6 for general background. There are many published strategies for monitoring
changes in the behavior of time series. Nearly all strategies specify that a particular model is in
effect for the time series, and the goal is to design tests for departure from that model. Departure
is a way to quantify what is meant by a change in behavior of the time series. The new idea here is
that all sections of data that depart from the model for ordinary background are included in a data
file to be analyzed using clustering and classifying (pattern recognition) methods.

4.1 ARIMA Time Series Models

One widely studied class of time series model is the auto-regressive, integrated moving average
(ARIMA) model, which we will use to illustrate the idea. Suppose that the time series

{X,,X,, ..., X,} has been detrended by differencing or, equivalently, by fitting polynomial func-
tions of time. The detrended series is said to follow an auto-regressive, moving average (ARMA)
model.




We can write the general scalar ARMA (p, ¢) model as

X, = a0+2§=1ant_j+Zj=objet_j [6))
where the g g and b ; are real constants, the €,_ jare independently and identically distributed (iid)
random variables, and e {1,2, ..., n}. It is common to refer to €_;as the shock at time 7 — j.
Usually ARIMA models further specify that the shock g, follows a Gaussian distribution with
mean 0 and variance ¢, denoted N (0, ¢). In addition, to ensure that the time series is stationary
(constant mean, variance, and covariances) and invertible [representable as an auto-regressive
(AR) model], conditions are imposed on the values of the a f and b i See Ref. 6 for further details.

Note that X, is a linear combination of the past p values of the series (auto-regressive) and of the
past g shocks (moving average). We have not restricted this study to the class of linear ARMA
models, but because ARMA models are a convenient and easy-to-discuss class of models, most of
our discussion will use the ARMA model for an example. Reference 2 introduced 12 candidate
ways to model and forecast a vector-based time series. However, at the time Ref. 2 was written,
we had no algorithms for vector ARMA time series. All the commercial software had a gap in that
they only treated vector AR time series. It is more computationally challenging to handle vector
ARMA models. To date, we have heard, but not confirmed, that one lesser-known statistical pro-
gramming package (JMP) can handle vector ARMA time series. We have added the ability within
the statistical and graphical programming language S+ by using a user-contributed library of
state-space (in the sense of the Kalman Filter language) functions. Details can be found in Ref. 7.

4.2 Vector AR Models

In this section we give more details about each of the 12 candidate ways to model an AR time
series. An AR time series can be written as follows:

X, =F X X 5 X, ) +e,. V)]

The error e, is usually assumed to be from some convenient distribution such as the Gaussian but
need not be. Nearly always, the distribution of the e, is at least assumed to be the same for all z.
We will assume that the errors have the same distribution F, which we write as e,~F( ).Notall
functions f combined with error distribution F lead to a stationary time series. We do not attempt
a formal treatment of this issue, but rather accept Equation (2) as a basis for trying certain model-
ing approaches. We also easily generalize (2) to include other time series, say y and Z:

X, =fX,_X,_ ""Xf-lx,,’ Y,...Y zZ, ..., Zz-l,) +e, . 3

S ST
t I,yx




Note that present values of both ¥ and Z are allowed because the goal is to forecast Z. In our
setting, X is the gamma series, Y is the electron series, and Z is the proton series. Or, in another
setting, we have only two series: gammas and a series proportional to the sum of electrons and
protons.

Equation (3) can be treated exactly like an ordinary regression model for which there are many
techniques, loosely described by the degree of assumptions placed on the functional form for f.
We will discuss the 12 models in order from the most restrictive assumptions to the least restric-
tive assumptions made about f. First, we point out two advantages to using restrictive models such
as models that assume f is linear.

(1) Often there is not enough data to estimate complicated models or completely unrestricted f.
In fact, the old standby, linear regression, will be with us forever for this reason and repre-
sents an extreme example of “combining information™ in that data at one end of the range is
assumed to have the same functional form as data at another end of the range. By the way,
because we insist on working with stationary series, we often must restrict the time window
so that the series can be considered stationary over that window, thereby reducing the effec-
tive size of the data set and essentially forcing us to use only the simplest models. More com-
plicated models suffer from the “curse of dimensionality,” which we will explain below.

(2) For years the regression literature has been filled with informal confirmation of the “parsi-
mony principle,” which states that simplest models are preferred when possible because no
data follows any model exactly, and model departures can be more severe when the training
data is overfit by using an overly complex model. Fortunately, we have a straightforward way
to guide us toward the proper degree of model complexity: use the model to forecast a held-
out (not used for training) testing set and accept the model that performs best on the testing
set. A complete treatment of this issue uses what is known as cross-validation to repeatedly
divide the data into training and testing sets. Cross-validation is very important when the data
sets are small. In our case, we simply did a one-time division into training and testing sets
because the data sets were reasonably large.

4.2.1 Linear AR models

Our simplest model assumes that f is linear in this sense:

p
f(xl,xz,...,xp) = a,+ j=1ajxj . @

For notational convenience we have dropped the distinction among the three time series X, ¥, and
Z and have lumped all candidate predictors together to form p predictors. An important issue is
how to choose the lag for each of the time series. We always use a “trial-and-error” approach
starting with lag 1 only for the X series (the series to be predicted) and starting with lag O for the
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other series. The winning method minimizes the sum of squared errors on a held-out testing set. If
the predictors are raised to powers other than 1, we would call it a polynomial regression. Four of
our 12 methods are linear regression methods: one is the traditional ordinary least squares (ols)
approach that minimizes the sum of squared errors to fit parameters g ay5 -+ @, . A second
method minimizes the median (Ims) of the squared residuals attempting to reduce sensitivity to
outlying observations. The third method is a robust regression (treg) that uses a more general
“M-estimation” procedure that uses iteratively re-weighted least squares. The second and third
methods both attempt to reduce sensitivity to outlying observations, which are known to cause
problems with ordinary least squares. The fourth method is a class of the generalized linear model
(glm) that allows the user to specify the error distribution F and thereby use parameter estimation
that is designed to be optimal for that distribution. We assumed that the error variance was
approximately Poisson-distributed for this method. In fact, we know of some extreme departure
from Poisson variance, so we had little hope for this method. In all four cases, the forecast errors
could be analyzed to suggest model departure, such as nonlinearity. If nonlinearity is detected,
then a good procedure is to search for a suitable transform for some of the predictors or to add
polynomial terms in the predictors. We have not detected nonlinearity in the forecast errors for
most of the data, so we suspect that the liniear models will suffice. However, we are assembling a
toolkit of model-fitting methods because they might be needed for other data sets. In that spirit,
the next group of methods makes less restrictive assumptions about f- Also included in this first
group is the exponential smoother, which uses a weighted average (exponentially decaying
weights) of the most recent observations to forecast the present observation. This method is
equivalent to a linear (MA) model fit to the first differences of a series, in the case we consider
here. The linear (MA) model fitted to the first differences of a series is denoted ARIMA(O,1,1) to
denote that first differences are analyzed (original data is nonstationary) and that MA with lag 1 is
used. For the exponential smoother [equivalently, the ARIMA(0,1,1)] we use only prior gammas
to forecast the present gamma counts. If we used the electron and proton series, we would have to
adapt the exponential smoother more than we considered appropriate at this time.

4.2.2 Nonlinear AR models

The second group of methods consists of the generalized additive model (gam), MARS (multi-
variate adaptive regression with splines), and projection pursuit regression (ppreg). All of these
methods restrict the functional form for f somewhat, but not nearly as much as the linear
methods.

1) The gam model. This model assumes

fapxynx) = 30 f;(x). ®)

Certainly (5) generalizes (4), as the individual f ;are arbitrary smooth functions. Model (5) is
called additive to emphasize that none of the p predictors “interact,” so for example, there is




2)

10

no term such as f;, (x,%;)- If such interaction terms are considered necessary, then they must
be put in “by hand” by defining a new variable x, , ; = X;%;. The individual f ; are estimated
by a “curve smoother” that can be described qualitatively with the help of Fig. 2. Figure 2
illustrates a “curve smoother” that the human eye could do quite well. Perhaps surprisingly,
training software to fit the smoother is non-trivial, and we discuss it further in Reference 8.
For now, accept that estimating a smooth function using a “curve smoother” algorithm is fea-
sible in one-dimension or perhaps in a few dimensions. Occasionally, if enough data follows
Equation (2), then a multidimensional curve smoother is feasible. However, the idea behind
the gam model in (5) is that the “curse of dimensionality” can be mitigated by restricting the
functional form to be additive.

00 02 04 05 08 10
xi

FIGURE 2. Scatterplot illustration of a one-dimensional curve smoother.

MARS. J. Friedman’s MARS method is perhaps one of the most important advances in
applied statistics in the last 10 years. MARS is an extension of CART (classification and
regression trees, which we describe in more detail in section 4) that addresses the weakness of
CART for regression. This weakness can be explained as follows. With CART, the predictor
space is split into non-overlapping regions and the predicted response is the average of the
response for cases with predictors that fell into that region of the predictor space. This proce-
dure can lead to a discontinuous response surface, which is nearly never desirable. The MARS
methodology removed the discontinuity of the response surface by effectively allowing over-
lap between the regions. See Ref. 9 for more detail. The MARS software is public domain, in




several forms. We have experimented with a Fortran version and a version compiled for S+.
Results in this report refer to the S+ version contributed by Trevor Hastie.

3) Projection Pursuit Regression. The idea in ppreg is to seek M new direction vectors

a,, a,, ..., @y, and good nonlinear transformations &1, &y, «.., Gy so that

F Gy eax) =300 o 73) ®
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because the inner product operation a ;% Tepresents a projection of x onto the direction a ;e

4.2.3 Nonparametric AR models

The last group of models includes local regression, fuzzy controller, and nonparametric
smoothing.

1y

2)

Local regression (loess in S+ ). We illustrated a statistically motivated curve smoother in
Fig. 2. In our view, a local linear or local polynom1a1 model is a special case of a statistically
motivated curve smoother.

Nonparametric smoothing (written for KF in 1994). We will present the equations for our one
dimensional curve smoother. The higher dimensional smoother is a natural extension. Our
curve smoother is similar conceptually to other statistically motivated curve smoothers.

F(x) =[[(1/(n 1)) 2 +1w(x"TXf)]/[(1/n)zn‘,w(x‘hxi)]). )
j=1

Note the “hat” notation in f which means that the rhs is an estimate of the true . This reflects
a change from all previously described models because we do not introduce an assumed
restricted form for f. Therefore, we simply present an intuitive way to estimate f at the point
x as follows. All data contributes to the estimated value via a weighted average, with weight
given by the distance of the data points from x . A data point, say X - that is far from x simply
won’t contribute much to the estnnate atx, provided we choose the smoothing parameter 4
and the weight function w so that w T , which is the weighting term, is small when x — X
is large. Consider Fig. 2 again, in the light of this description. For a given value X = x, the
estimate for Y is primarily determined by those ¥ values that correspond to X values near x.
This is a simple idea, but selecting the smoothing degree remains somewhat of an art despite
attempts to automate the choice of bandwidth %. However, by using held-out testing sets, it is
possible to do a reasonable job of automating the choice of #. Experience and theory suggest
that the choice of % is more critical thay the choice of w. Typically simple smooth functions
such as a Gaussian-shaped function e™ are a good choice. Theoretically optimal weight
functions such as the Epanechnikov kernel are sometimes suitable, but the best theoretical
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shape for the weight function depends on the true function f, so we are not fond of using spe-
cially motivated weight functions. In fact, we nearly always use simple Gaussian weight func-
tions and concern ourselves with searching for good 4. We give more details in Ref. 8, but
the basic idea is to balance the trade-off between bias and variance: too little smoothing over-
fits the data, reducing bias but increasing variance, and the reverse occurs for too much
smoothing.

3) Fuzzy forecaster (written for KF in 1995). The fuzzy forecaster has a few forms. The form we
use here is often called a fuzzy controller (Ref. 10). In our view, the fuzzy logic approaches to
modeling and forecasting time series could benefit from a more statistical approach, especially
in the area of choosing the number of fuzzy regions, which is comparable to our choice of
bandwidth in Equation (7).

In Ref. 8 we provide more detail on this last group of models, including comparison on five real
and five simulated data sets. The conclusion in Ref. 3 is that the fuzzy forecaster offers no advan-
tage over statistically motivated curve smoothers. In fact, our view is that fuzzy logic offers no
advantage over statistically motivated approaches in any area in which the data is numeric. Fuzzy
logic was developed for situations in which numeric data was not available and probably is best
applied only in those unfortunate situations.

4.2.4 Summary of the vector AR models considered

First, we are considering vector AR models only because we have relaxed the linearity assump-
tion. Although it may be possible (see Ref. 11 for an ad hoc “two-step” procedure that is under
investigation) to treat nonlinear MA models, we have not attempted that with the nudet-detection-
related data. Once we restrict attention to AR models, we get access to a host of regression tech-
niques that can be applied as if the data were in the usual regression setting: observe independent
cases of data “pairs” (%,y) where the X vector is a p -component predictor vector. The only differ-
ence in our setting is that successive cases are not independent because of the serial correlation.
However, asymptotically (as the number of cases increases) this serial correlation can be ignored
for estimating the function. (See Ref. 12).

Most real time series do not exactly follow any model, linear or nonlinear. The challenge in such
cases is to select a reasonably simple model that captures the relevant behavior of the series. And
many time series cannot be made stationary (de-trended) for extremely long time periods. How-
ever, many real time series change slowly enough that under their “usual behavior” some kind of
model is in effect locally. For example, a particular ARIMA model might be a reasonable model
for the first 1000 observations, but a different ARIMA model might be a better model for the next
1000 observations. This complicates the situation, because in that case, we do not care about all
changes that might occur in a time series model. As another example, a series might follow some-
thing like a simple ARIMA(0,1) model [also known as an MA(1) model] but with varying error
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variance. This could be due to a probabilistic mechanism that causes the mean to affect the vari-
ance. Simply put, large numbers tend to vary more than small numbers, so the error variance
might depend on the mean of the series. Depending on the particular application, such a model
change might not be of interest. For example, in any nudet-detection project, it is likely that the
time series generated by radiation detectors counting the background will have some Poisson-type
variance component. The Poisson distribution often arises in particle-counting statistics and the
Poisson variance equals its mean. Therefore, we should not be surprised to see higher variability
in sections of the time series where the mean is higher.

5. Further Details About “Event Records”

Most of our 1995 effort has been with the “event records” for which we have more frequent
observations of the gammas and for a series which we call flld that is proportional to the sum of
the protons and electrons. One lesson learned during 1994 was that the anticipated relation
between charged particles and gammas had to be carefully defined. Over some time scales, there
is an obvious strong relation between, say, the electrons and gammas. For example, in Fig. 3 we
show a section of time with the electrons in the top plot and gammas in the bottom plot.
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FIGURE 3. Electron counts and gamma counts.
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From this plot it appears that it will be simple to use the electrons to forecast the gammas because
the electrons appear to be proportional to the gammas. In fact, forecasting the gammas using elec-
trons with data recorded about every 8 sec works fairly well. However, in Fig. 4 we plot the ratio
of the electrons to the gammas versus time, and we see that in the region of large variability in the
gamma counts, there will also be large variability in the forecast errors using a linear fit of the
gamma counts regressed on electron counts.
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FIGURE 4. Ratio of electrons to gammas over the same time period as shown in Fig. 3.

Forecast errors from a linear fit of the gamma counts to the electron counts are shown in Fig. 5,
and we informally see that there will be at least one alarm near observation 220.

Also, our nudet signal is mostly contained within about 2 sec so it is better to use more frequent
data. That is a second reason we considered the “event records™ in 1995. These event records
record data more frequently than every 8 sec and have a “pre-event” buffer that we will assume
represents ordinary background. Therefore, using the event records we can (1) check the relation
between gammas and charged particles over shorter-than-8-sec time scales and (2) have a better
“signal-to-noise” ratio for nudet detection.
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FIGURE 5. The forecast errors that result from a linear model relating gamnma counts
to electron counts for the region shown in Figs. 3 and 4.

To complete this discussion, we report results of our suite of 11 candidate forecast methods to the
section of 878 pairs of concurrent electron and gamma counts. Because this was data with 8.192-
sec resolution, 878 pairs represent about 2 hr of data. Here are the two ground rules:

(1) Use the first 2/3 of the data (the first 586 data pairs) to build the model. Then report the
average squared forecast error over the last 1/3 of the data (the last 292 data pairs).

(2) Always test (formally with statistical tests or informally with graphical tests) for serial
correlation in the forecast errors. If the forecast errors exhibit serial correlation, then the
model is not yet acceptable because that serial correlation should be exploited in the
model. Forecast-error variances are reported only if the errors exhibit no serial correla-
tion. A more complete model assessment could attempt to check for any serial structure
in the forecast errors (not restricted to serial correlation, which only measures the linear
structure). We have not attempted to check for nonlinear structure in the forecast errors.

The goal now is to minimize the average squared forecast error of the gammas. We begin with the
exponential smoother and ARIMA(0,1,1). These two are theoretically equivalent, but there are
slight implementation differences between our exponential smoother and the S+ implementation
of ARIMA(0,1,1). The variance of the last 1/3 of the original gamma series is 82,563.
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In these first two methods in Table 1, only prior gammas are used to forecast the present gammas.
In methods 3 to 12, we use present electrons and protons to forecast the present gammas. The
main observation is that none of the methods reduce the forecast-error variance noticeably more
than the exponential smoother result. Each of the 11 methods below can be appropriate for a par-
ticular kind of time series. In a later report we will document the performance of these methods on
other data sets.

TABLE 1. Comparison of the 12 Methods Applied to Forecasting the Gammas

Method Average Squared Error
GROUP1:

Method 1: exponential smoother 27,132
Method 2: ARIMA(0,1,1) 27,256
Method 3: least squares linear model = | 29,506
Method 4: least median squares linear model 68,770
Method 5: robust regression 29,517
Method 6: general linear model 32,522
GROUP 2:

Method 7: projection pursuit regression 118,797
Method 8: generalized additive model 44,144
Method 9: MARS (multivariate regression with splines) 37,366
GROUP3:

Method 10: loess - a local regression 49,776
Method 11: nonparametric smoothing (written for KF) 36,036
Method 12: fuzzy controller (written for KF) Fokkokok

For method 12, the fuzzy controller, we did not include the resuit because it was applied with a
slightly different protocol than we have described. Rather than divide the data into the first 2/3 to
train and the last 1/3 to test, we randomly selected 1/2 to train and 1/2 to test. Therefore, results
are not directly comparable. We plan to add a version of our fuzzy controller that will divide the
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data deterministically into a first 2/3 to train and a last 1/3 to test, but for now we can at least com-
pare the fuzzy controller result to a version of method 10 (loess) that used the same protocol as the
fuzzy controller. The resulting average squared forecast errors were 41,143 (fuzzy controller) and
41,699 (loess). Because we repeated the experiment several times, we could assign a confidence
interval to both results. We concluded that the two methods do not produce statistically significant
differences. We give more detail in Ref. 8.

The main conclusion is that the first group (linear methods) does as well as the more complicated
methods. Also, we are puzzled by the poor performance of projection pursuit regression, espe-
cially because it performed competitively on the training data, which was the first 2/3 of the data
set. We plan to experiment further with projection pursuit because we have been told that it some-
times gives the best results. Our conclusion with this particular data set, however, is that the data
do not follow any model very well, so the simplest model assumptions are the best.

6. Pattern Recognition to Separate False Alarms from True Events

In section 4 we describe two related issues: pfeparation of the “event records” for analysis by pat-
tern recognition methods and development, application, and adaptation of several pattern recogni-
tion methods.

6.1 Preparing the Event Records for Analysis by Pattern Recognition Methods

The event records contained more information than we needed, so we restricted attention to only
the fild (proportional to the sum of electrons and protons) and gamma counts. For both the fild
counts and gamma counts, there are about 20 counts of “pre-event” data, 5 counts of “event” data,
and 13 counts of “post-event” data. The post-event data is recorded less frequently that the pre-
event and event data. In Fig. 6 we show 4 plots: 6a and 6b show the gammas (flld) from a ran-
domly selected event record, 6¢ shows gammas versus flld for the same event record, and 6d
shows gammas versus fild for two other randomly selected event records. The disappointing mes-
sage is that over these time scales we do not see much relation between the flld and the gamma
counts.

A separate report (Ref. 7) gives more detail about these event records, including a model-based
summary of the relation between the flld and gamma counts. By “model-based” summary, we
mean, for example, that a linear model was fit relating the present gamma count to the present fild
count and that the estimated linear coefficient was stored in a file to be summarized. Many of the
linear coefficients were actually negative. And there is strong periodicity in the flld counts and
negligible periodicity in the gamma counts. That fact alone suggests that the fild counts cannot be
terribly well related to the gamma counts. The weak relation between the flld counts and the
gamma counts makes it difficult to predict whether it is better to forecast the gamma series using
prior gammas or some combination of prior gammas and fild. See Ref. 7 for more detail.
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FIGURE 6. Example event records. (a) gammas versus time index (38 points), (b) fild
versus time index, (¢) gammas versus flid for same record as in (a) and (b),
and (d) gammas versus flid for another randomly selected record.

To this point we have mentioned 76 candidate features (38 gamma counts plus 38 flld counts) to
attempt to discriminate nudets from unusual background. There are two other features: the data-
gathering hardware system on a particular satellite (coded as system 1 or system 2) and the satel-
lite identification (coded as 1, 2, or 3). We also “created” the following 45 additional candidate
features in groups (1) - (12) below.

1. Exponential smoother results were obtained by applying the exponential smoother to the
first 20 points of the gamma series and searching for and recording the smoothing parameter
that minimizes forecast error variance, the minimized variance, and the ratio of the mini-
mized variance to the variance of the first 20 points of the gamma series. (3 features)

2. Poisson checks were obtained by binning the data into five regions: points 1-10, points
11-20, points 21-25, points 26-28, and points 29-38. The reasons for doing so are as follows:
(1) many of the event records exhibit reasonably slow variation, so the gamma counts for
those records should be approximately Poisson-distributed over fairly short sections of time;
(2) the event records were supposedly triggered by point number 21, so points 21-25 should
be treated separately from points 1-20; and (3) the post-event points have two levels of reso-
lution, one for points 26-28 and the other for points 29-38. We account for the three levels of
resolution by rescaling, computing the rescaled variance-to-mean ratio for each of the five
regions, and thereby creating five features. (5 features)
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10.

11.

12.

The maximum forecast error over points 16 to 25 was recorded using a simple moving
(unweighted moving average) average, the index in 16-25 for which the maximum error
occurs, and the postavg-preavg (post and pre are defined relative to the index where the max-
imum error occurs). The maximum forecast error is recorded as a ratio of the actual error to
the square root of the relevant moving average. (3 features)

Mean and variance of gammas were recorded over each of four regions: 1-20, 21-25, 26-28,
and 29-38. (8 features)

Mean, variance, and slope of gammas were recorded over points 1-17. (3 features)
Mean of gammas were recorded over points 18-20. (1 feature)

The index i after index 21 for which the 3-point average (indices i-2, i-1, i) falls below the
gamma count at index 21 defines a peak “width.” The following features were created: peak
(among points 21-38) relative height (absolute height minus 3-point average in (6) above),
peak absolute height, and width. (3 features)

A measure of overall trend in the 38 gamma counts was the difference between the gamma
means over 29-38 and over 1-20. (1 feature)

Based on observing that some of the calibration events showed a large gamma count at index
1 followed by a small gamma count, we considered the gamma count at index 2 minus the
gamma count at index 1 to be a feature. (1 feature)

We fit a linear model to the first 15 gammas as a function of the first 15 flld counts. We used
the linear coefficient (slope of gammas versus flid) to forecast the next five gammas (points
16-20) and recorded the corresponding five forecast errors, their variance and mean, and the
linear coefficient. (8 features)

Same as (10) above, but we used the first 20 gammas and the first 20 fild counts to estimate
the linear coefficient and forecast the next five gammas (points 21-25). We recorded the cor-
responding five forecast errors, their variance, and mean. (7 features)

We fit a linear model to the gammas versus time over points 1-20 and 29-38. We recorded
the linear coefficients. (2 features)

In a few preliminary experiments, we included the 38 fild counts among the long list of candidate
features. However, because the gamma series is of primary interest and the flld series is used to
help create several of the candidate features, we did not include the 38 fild counts themselves
among the candidate features in the results reported here. The number of candidate features is
then reduced to 38 (gamma counts) plus 2 (system type and satellite) plus 45 (45 derived features
described in the 12 groups above) equals 85.
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For completeness, we also mention here that because we had access to quite complete event
records, we could compute user-defined gamma counts by summing desired channels. This was
accomplished by a pearl script and allowed us to completely eliminate one category of events.
The eliminated category is referred to as operator errors, which are created by summing other-
than-the-nominal energy channels for the gamma counters. We summed the nominal energy chan-
nels to eliminate the operator-error category. We were left with three categories: “true,” “call,”
and “cal2.” We think of the trues as candidates to be nudets because there is no assignable cause
for the rapid gamma fluctuation, whereas with the calibration events of type call or cal2, there is
an assignable cause for the rapid gamma fluctuation. Using all 85 candidate features, we created
the following file:

1) file3.df — 85 features, 3 classes (true — 194 cases, call — 50 cases, cal2 — 19 cases). There
were a total of 263 cases.

We also wanted to experiment with avoiding any feature that directly related to the magnitude of
the gamma counts because we knew that there was considerable variability in the gamma back-
ground. Therefore, we eliminated the 38 gamma counts and any feature that directly related to the
gamma count to create the following file:

2) file4.df — 33 features, 3 classes — same as file3.df, but only uses relative height of
gamma peak, width of gamma peak, gamma count at index2 minus gamma count at
index1, the 8 features involving forecast errors in group 10, the 7 features involving fore-
cast errors in group 11, the 2 features involving linear trends over points 1-20 and over
points 29-38, the 11 features described in groups (1) - (3), and system type and satellite.

The next file (file5.df) uses the same candidate features as file3.df but adds a nudet class. We
obtained the nudet cases from a random sample of event records, which did not satisfy our alarm
criterion. Those records were judged to be reasonably representative of ordinary background, so
the simulated nudets were added to points 21-25 in those records. The idea is that we did not want
to consider the case where a nudet occurred during a section of unusual background. The simu-
lated nudet added counts from a Poisson distribution with an average shape distributed over
points 21-25, which was determined by repeated execution of the nudet simulation code that was
written during the 1994 KF project.

3) file5.df — 85 features, 4 classes — same as file3.df, but we added the nudet class for a
total of 273 cases.

The last file (file6.df) uses the same candidate features as file4.df, but as with file5.df, a nudet
class is added.

4) file6.df — 33 features, 4 classes — same as file4.df, but we added the nudet class for a
total of 273 cases.
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The file names are unimportant here except that we refer to them in several of the plots in section
5.2.

The main reason for considering file3.df and file4.df, which do not have nudet classes, is to apply
cluster analysis to determine whether the true class seems to have distinct mechanisms giving rise
to the erratic counts. Also, three of the pattern recognition techniques essentially apply a form of
cluster analysis separately to each class to see how many clusters are present in each class and
then use some representation of the cluster center to discriminate among cases. More detail is
given in section 5.3. In section 5.2 we present some of the results of cluster analysis applied to
file3.df and file4.df.

6.2 Results of Cluster Analysis

We applied three clustering techniques to the class=true cases from file3.df and file4.df: kmeans,
hierarchical clustering, and model-based clustering. We give a brief description of each below.

1) kmeans is one of the oldest clustering methods. If £ = 2, then the algorithm searches for the
best partition of the cases into two clusters such that the within-cluster variance is small com-
pared to the between-cluster variance. We apply k-means for a range of k from 2 to 10 and
select the value of k using a criterion suggested by Hartigan (Ref. 13). The criterion accepts
adding a cluster to increase from & to k + 1 clusters if the within-cluster sum of squares is
sufficiently reduced. Applied to file3.df, there is reasonably convincing evidence for four
clusters.

2) Hierarchical clustering is the simplest clustering method to describe. Compute the distance
between each pair of cases. Group the closest two cases first, then add to that cluster the case
that is closest to that first cluster. There are several varieties of hierarchical clustering depend-
ing on how distances from a case to a cluster or from a cluster to a cluster are determined. A
common choice is to use the average distance between a given case and each case in a cluster
as the distance from a case to a cluster. Another choice is to use the largest distance between a
given case and each case in a cluster. In Fig. 7 we show the results of a hierarchical clustering
using the latter definition of distance. The main features in Fig. 7 are that case 63 is an outlier
and that there is informal evidence for three other clusters. The informal evidence is the same
as that used from the kmeans criterion: the within-cluster variance is reasonably well reduced
by choosing three main clusters and one outlying cluster of size one. So, as with kmeans, we
again find reasonably convincing evidence for four clusters.
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FIGURE 7. Result of hierarchical clustering applied to the class=true cases from file3.df.

Because the hierarchical clustering indicated that case 63 is an outlier, we investigated the
cause. First, we used a standard dimension-reduction technique that uses the covariance
matrix containing the variances of each feature on the diagonal of the matrix and the covari-
ances between each feature in the off-diagonals. The dimension-reduction technique then uses
eigenvectors of the covariance matrix to define a new coordinate system for the data. The first
coordinate (called the first principal coordinate) is the eigenvector corresponding to the largest
eigenvalue, the second coordinate corresponds to the second largest eigenvalue, etc. If the
data is projected in the direction of the principal components (PC), then the variance of trans-
formed data for PC1 is maximum, and the variance of PC2 is next largest constrained to be
uncorrelated with PC1. In Fig. 8 we show the fraction of the total variance of the original data
(sum of diagonal entries of covariance matrix) by each PC. Informally, we see that the first
two or perhaps the first three PCs contain most of the variance. Therefore, we can see which
variables (features) from case 63 contribute most to the first two or three PCs. Also, we can
plot PC1 versus PC2 for each case and confirm that case 63 still appears to be an outlier even
for this reduced-representation of the data (see Fig. 9). By calculating the contribution of each
variable to PC1 and PC2, we can see that case 63 is an outlier for a surprising reason: the vari-
ance of the gamma counts over points 1-20 is unusually high while the mean over points 1-20
is unusually low. To further investigate case 63, we rescaled the data so that all variances
would equal one. It is a well-known fact that clustering results using covariance matrices can
be very different from results using correlation matrices, so we wanted to know if case 63




would still appear to be an outlier using the rescaled data. The result was that case 63 contin-
ues to appear as an outlier on the rescaled data, but the important variables become the Pois-
son checks rather than the variance and mean gamma counts over points 1-20. We currently
have no explanation for this behavior.
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FIGURE 8. Plot of principal components for file3.df.

3) Model-based clustering is a relatively new clustering technique that uses an extended version
of hierarchical clustering (Ref. 14). The extensions are that a Bayesian criterion helps choose
the number of clusters and noise or outliers can be explicitly modeled. We experienced out-of-
memory problems with our system using model-based clustering on file3.df, but applying it to
file4.df (fewer features), we again found evidence for four clusters based on the Bayesian
criterion.

We have also applied the three clustering methods to file4.df and again found reasonable evidence
for three clusters using kmeans and hierarchical clustering, but model-based clustering did not
strongly suggest a best number of clusters. Also, hierarchical clustering suggested case 63 to be an
outlier, and when we removed case 63, case 81 appeared to be an outlier. We plan to investigate
possible reasons for this behavior.
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FIGUREY. Plot of PC2 versus PC1 for file3.df. Bottom plot forces equal scales on
vertical and horizontal axes; top plot does not.

We summarize as follows. One of the useful conclusions from the cluster analysis was that one or
two true outliers were identified, and a second useful conclusion was a reasonably strong sugges-
tion that the class=true cases contain three clusters using either the full set of features (file3.df) or
the reduced set of features (file4.df).

6.3 Adaptation and Application of Several Pattern Recognition Methods

In this section we introduce and describe the following pattern recognition methods: decision
trees, linear discriminant analysis, mixture discriminant analysis, flexible discriminant analysis,
k-nearest-neighbor methods, a new mixture discriminant analysis (written for KF), and a particu-
lar (well-known) neural network called learning vector quantization.

6.3.1 Decision trees

There are several approaches to building decision trees. We give an example tree using file6.df
(4 classes, 33 candidate features) in Fig. 10. The approach we prefer is that implemented in the
commercial software CART (classification and regression trees). We mentioned CART in section
3.2.2 in connection with MARS. The key issue is how to select one tree from the infinitely many
possible trees or how to combine information from several selected trees. We postpone until 1996
the issue of combining information from muitiple trees. Here we present single trees that were
selected from a combination of ad hoc and formal methods. The idea behind CART trees is to
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build a large tree with many terminal nodes, then to use held-out test data to help select the degree
to which the large tree should be pruned back. As is always the case, there is a tendency to overfit
the training data (build too many terminal nodes), so it is essential to use held-out test data to
counter this tendency. Non-terminal nodes are associated with a split criterion such as file6.30 <
30.574 at the root node in Fig. 10. The notation conveys the idea that feature (or predictor) vari-
able number 30 was used and cases with variable 30 < 30.574 travel left through the tree. Variable
30 is the maximum forecast error between points 16 and 25. Such a split criterion is obtained by a
trial-and-error method that tries splitting a given node at all feasible breakpoints for numeric vari-
ables, or for all possible subset partitions for categorical variables. Other important variables
(used in splitting criteria) in the tree shown in Fig. 10 are as follows: variable 31 is the position of
the maximum error, variable 12 is the slope of the gamma counts over points 1-20, and variable
13 is the error at point 21. Notice that the file 30.26 < 4.05 node splits into two nodes that are both
labeled class 1. Those labels are the predicted class, so splitting a node into two nodes that will
both be predicted to be class1 cases has no effect on the performance of this tree. However,
because the tree was first grown larger and then pruned back, it did have an effect on the larger
trees.
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FIGURE 10. Decision free for file with 4 classes and 33 candidate features.

The CART software also considers using linear combinations of variables at a given node, but we
rarely find that linear combinations of variables are needed. Therefore, this report restricts atten-
tion to results using CART-like software that is in the statistical programming language S+, which
does not consider linear combinations of variables as possible split criteria. The advantages of
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decision trees include the following: robustness with respect to outliers, easy allowance for miss-
ing data through use of surrogate splits (each node has second, third, ..., best split criteria that can
be used if a case is missing the variable used by the best split criterion), excellent data exploration
capabilities, and simplicity of use once constructed. For further details, see Ref. 15.

In Fig. 11 we show a decision tree for fileS.df with 4 classes and 85 candidate features. Variable
82 is the average forecast error over points 21-25. This is a satisfying result because the Neyman-
Pearson Lemma would suggest that either a weighted or unweighted sum of the forecast errors
over points 21-25 would be a good discriminator. See Ref. 7 for further details on the application
of the Neyman-Pearson Lemma to this type of problem. Variable 55 is the average of the gamma
counts over points 29-38 minus the average of the gamma counts over points 1 to 20. Variable 44
is the variance of the gamma counts over points 1 to 20. Recall that case 63 was an outlier largely
because it had a very high variance and a low mean for the gamma counts over points 1 to 20.
Variable 83 is the slope of the gamma counts over points 1 to 20. As in Fig. 10, terminal nodes are
labeled with the predicted class for cases that fall into that node.

file5.8265.1911

-

5 1.5 111311 l
1
1
1 I I 4 1

4 1

FIGURE 11. Decision free for file with 4 classes and 85 candidate features.

6.3.2 Linear discriminant analysis (Ida)

Linear discriminant analysis is the original (dating to 1930s with R. Fisher) pattern recognition
method. The assumptions are as follows: for a given class i, the data has a multivariate normal
distribution with mean vector fii and covariance matrix X , which is denoted X|i ~ N (ﬁi, 2). That
is, the mechanisms generating the data for different classes differ only in the mean vector. Under
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that assumption, 1da is the theoretical best method and is also called the Bayes method for that
reason. Of course, real data never follow any theoretical distribution exactly and, even if the nor-
mality assumption was reasonably well met, the assumption of equal covariance matrices remains
as well as the assumption that each class has only one mean vector. Nonetheless, 1da performs
remarkably well for a variety of real data sets; Ida continues to be a benchmark method.

6.3.3 k-nearest neighbor methods (knn)

The knn method is the simplest to describe. Classify a given case in the testing set according to
the classes assigned to the nearest (in the predictor space) & cases in the training set by using
majority rule. Break ties randomly. For example, with £ = 2, if the two nearest cases in the train-
ing set have class 1 and 2, then assign class 1 with probability 1/2 and class 2 with probability 1/2.
The important issue is the choice of metric to compute distances. Also, for extensive use of knn, it
is important to restrict the size of the training set because of the requirement to compute and sort
all distances between each test case and all training cases.

6.3.4 Mixture discriminant analysis (mda)

Mixture discriminant analysis is a natural extension of 1da, although it is very recent (Ref. 16).
The idea is to allow any number of mean vectors for a given class. A clever application of the EM
algorithm (estimation-maximization) is to treat the issue that the proportion of cases for a given
class that belong to a particular subclass is unknown and therefore is treated as missing in the EM
algorithm. The number of subclasses for each class is treated as a “meta-parameter,” not formally
treated in the EM algorithm but treated by trial and error.

6.3.5 Modified mixture discriminant analysis (mmda)

Modified mda was written explicitly for KF in 1995. It is a simpler version of mda that uses
kmeans or hierarchical clustering within a given class to suggest the appropriate number of sub-
classes (clusters) for each class. Recall from section 5.2 that we have had computational difficul-
ties with model-based clustering, so model-based clustering is currently not an option. Having
selected a good number of subclass “centers,” we apply the knn approach using the subclass cen-
ters with class labels to replace the training data used in the knn approach.

6.3.6 Neural network: learning vector quantization (Ivq)

The lvq neural network is similar to our mmda, but with the resulting subclass “centers™ replaced
by “codebook vectors.” The codebook vectors are selected by trial and error as well as the number
of codebook vectors per class. These vectors are not likely to be either an actual training case or a
mean vector for a group of training cases because the iterative trial-and-error method works in a
unique way described, for example, in Ref. 17.
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6.3.7 Flexible discriminant analysis (fda)

Flexible discriminant analysis is another recent (Ref. 18) method that exploits the following not-
well-known fact. Linear discriminant analysis can be derived by repeated linear regression of the
class (viewed as a response) on the predictors. In the first regression, all class=1 cases have
response=1 and all other cases have response=0. In the second regression, all class=2 cases have
response=1 and all other cases have response=0, and so on. The end result will be estimated
(scaled) probabilities of each class, which can be used to predict class membership. The idea of
fda is to replace the linear restriction with any of the regression methods, such as those described
in section 3.2. Our implementation currently uses MARS only.

7. Results of the Seven Pattern Recognition Methods

In this section (Table 2) we give results of each of the seven pattern recognition methods to
file5.df, file6.df, and to a simulated data set we call waveform. The waveform data is described in
Ref. 16 and is considered to be a challenging pattern recognition problem for which mda is ideally
designed. The theoretically lowest possible misclassification probability is .14 for the waveform
data. We used 400 cases to train and 400 cases to test the waveform data.

TABLE 2. Comparison of the Seven Pattern-Recognition Methods on
Two Real and One Simulated Data Set

Method Estimated Misclassification Probabilit
fileS.df file6.df waveform
tree A2 14 27
Ida .20 20 18
kan
1nn 20 19 25
3nn 21 17 21
5nn 20 18 17
10nn 20 19 18
mda A8 22 .16
mmda 46 38 18
fda 16 20 21
Ivq 35 38 16




Recall that file5.df has 4 classes, 85 predictors, and 373 cases. File6.df has 4 classes, 33 predic-
tors, and 373 cases. We presented a selected decision tree for file6.df in Fig. 10 and a decision tree
for file5.df in Fig. 11. We created the training and testing set as follows. The number of cases for
classes 1-4 were 194, 50, 19, and 110, respectively. One half of the cases for each class were ran-
domly selected for training and the other half were used for testing. In Table 2 we record the mis-
classification rate for the held-out test cases.

Note that for file5.df and file6.df the decision tree performs best, whereas the mmda and Ivq per-
form the worst. Recall that the waveform data was designed to showcase mda so it is not surpris-
ing that mda does the best on that data. We were pleased with the performance of mmda on the
waveform data, however, and although we are disappointed by the poor performance of mmda on
file5.df and file6.df, we do believe the method can be competitive on some data sets. We are also
surprised by the poor performance of Ivq on file5.df and file6.df. We should emphasize that we
did not attempt to fine tune any of the methods except to create file6.df, which contained fewer
candidate predictors. The results should be interpreted accordingly. Our intentions in applying and
developing pattern recognition methods in such a setting have been to (1) reduce the false alarm
rate by sending all alarms into a discriminant.function to attempt to separate true from false
alarms and (2) provide a means to better understand the background data, as in the present case
where there appears to be three distinct clusters in the class=true cases. To formalize the reduction
in the false alarm rate, consider the result with the decision tree. The “confusion matrix™ in Table
3 below gives the true class in each column and the tree’s prediction in each row.

TABLE 3. Confusion Matrix for the Tree Classifier for file6.df

1 2 3 4
1 93 0 7 9
2 0 23 0 0
3 0 2 3 0
4 4 0 0 46

In Table 3, consider only the cases for which the tree predicted class=4 (nudet) when the class was
not 4. That occurred 4 times out of 50. That is, of the 50 times that class=4 was predicted, in only
4 cases was the true class not 4. This is an 8% false alarm rate. Therefore, the overall false alarm
rate has been reduced to 8% of the original false alarm rate that was in effect in the rate of creation
of the event records. As an important aside, we are beginning to experiment with building multi-
ple trees based on random resamples (bootstrap samples) of the training set and then using major-
ity rule to classify. This method is being developed by Brieman from the CART team (Ref. 15)
and is called bagging (bootstrap aggregation). With the waveform data, the misclassification rate
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of the bagged tree is about .16, which is competitive with any of the methods. Therefore, we
believe that tree methods or bagged-tree methods show great promise for a wide range of data
sets.

8. Summary and Conclusions

We have presented a suite of approaches to modeling and forecasting the ordinary background to
enhance the method used for flagging unusual background that must be further analyzed by pat-
tern recognition. The suite ranged from the most basic to the most modern and each method will
have some suitable domain of application. In this report the best modeling method had the mini-
mum average squared error for the held-out testing set.

Also, we have presented a detailed study of the application of pattern recognition in the setting of
event records from a nudet-detection project. We anticipate that many surveillance settings will
operate in a similar manner: monitor a subset of key time series and keep a short buffer of data
available at perhaps higher resolution for all time series that can be further analyzed when the
“suspicion level” is raised as judged by some alarm threshold. Follow all alarms with “anomaly
resolution” to attempt to assign causes to each alarm. For example, note from the confusion
matrix shown in section 6 that all 23 of the class=2 cases (1 of 2 types of calibration) turned out to
be easy to identify. Of course, in this setting the operators already know that the calibration event
caused the alarm that created the event record, but the idea is still quite useful. It can also some-
times be of interest to better characterize the background also, and in our case there was strong
indication of three distinct clusters. We believe that this approach will have multiple applications.
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