skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Black hole lasers, a mode analysis

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Laboratoire de Physique Theorique, CNRS UMR 8627, Bat. 210, Universite Paris-Sud 11, 91405 Orsay Cedex (France)

We show that the black hole laser effect discovered by Corley and Jacobson should be described in terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of complex frequency modes, which appear in pairs and which encode the laser effect. In addition, it contains real frequency modes that form a continuous set when space is infinite, and which are only elastically scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is small, our expressions differ from those given earlier. In particular, when the region between the horizons shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in electric fields, and we give the conditions to get this type of instability.

OSTI ID:
21431057
Journal Information:
Physical Review. D, Particles Fields, Vol. 81, Issue 8; Other Information: DOI: 10.1103/PhysRevD.81.084042; (c) 2010 The American Physical Society; ISSN 0556-2821
Country of Publication:
United States
Language:
English

Similar Records

Quantum information erasure inside black holes
Journal Article · Tue Dec 15 00:00:00 EST 2015 · Journal of High Energy Physics (Online) · OSTI ID:21431057

Evanescent modes and step-like acoustic black holes
Journal Article · Thu Aug 15 00:00:00 EDT 2019 · Annals of Physics · OSTI ID:21431057

Black/white hole radiation from dispersive theories
Journal Article · Mon Jun 15 00:00:00 EDT 2009 · Physical Review. D, Particles Fields · OSTI ID:21431057