skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Black/white hole radiation from dispersive theories

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Laboratoire de Physique Theorique, CNRS UMR 8627, Batiment 210, Universite Paris-Sud 11, 91405 Orsay Cedex (France)

We study the fluxes emitted by black holes when using dispersive field theories. We work with stationary one-dimensional backgrounds which are asymptotically flat on both sides of the horizon. The asymptotic fluxes are governed by a 3x3 Bogoliubov transformation. The fluxes emitted by the corresponding white holes are regular and governed by the inverse transformation. We numerically compute the spectral properties of these fluxes for both sub- and superluminal quartic dispersion. The leading deviations with respect to the dispersionless flux are computed and shown to be governed by a critical frequency above which there is no radiation. Unlike the UV scale governing dispersion, its value critically depends on the asymptotic properties of the background. We also study the flux outside the robust regime. In particular we show that its low-frequency part remains almost thermal but with a temperature which significantly differs from the standard one. Applications to four-dimensional black holes and Bose-Einstein condensates are in preparation.

OSTI ID:
21300967
Journal Information:
Physical Review. D, Particles Fields, Vol. 79, Issue 12; Other Information: DOI: 10.1103/PhysRevD.79.124008; (c) 2009 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English