skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE FORMATION AND EVOLUTION OF YOUNG LOW-MASS STARS WITHIN HALOS WITH HIGH CONCENTRATION OF DARK MATTER PARTICLES

Journal Article · · Astrophysical Journal
;  [1]
  1. Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

The formation and evolution of low-mass stars within dense halos of dark matter (DM) leads to evolution scenarios quite different from the classical stellar evolution. As a result of our detailed numerical work, we describe these new scenarios for a range of DM densities on the host halo, for a range of scattering cross sections of the DM particles considered, and for stellar masses from 0.7 to 3 M {sub sun}. For the first time, we also computed the evolution of young low-mass stars in their Hayashi track in the pre-main-sequence phase and found that, for high DM densities, these stars stop their gravitational collapse before reaching the main sequence, in agreement with similar studies on first stars. Such stars remain indefinitely in an equilibrium state with lower effective temperatures (|DELTAT{sub eff}|>10{sup 3} K for a star of one solar mass), the annihilation of captured DM particles in their core being the only source of energy. In the case of lower DM densities, these protostars continue their collapse and progress through the main-sequence burning hydrogen at a lower rate. A star of 1 M{sub sun} will spend a time period greater than the current age of the universe consuming all the hydrogen in its core if it evolves in a halo with DM density rho{sub c}hi = 10{sup 9} GeV cm{sup -3}. We also show the strong dependence of the effective temperature and luminosity of these stars on the characteristics of the DM particles and how this can be used as an alternative method for DM research.

OSTI ID:
21378407
Journal Information:
Astrophysical Journal, Vol. 705, Issue 1; Other Information: DOI: 10.1088/0004-637X/705/1/135; ISSN 0004-637X
Country of Publication:
United States
Language:
English