Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Na-like W from Ne-like W

Journal Article · · Atomic Data and Nuclear Data Tables
 [1];  [2]
  1. Physics Department, University of Nevada, Reno, NV 89557 (United States)
  2. Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

Energy levels, radiative transition probabilities, and autoionization rates for 1s{sup 2}2s{sup 2}2p{sup 5}3l{sup '}nl,1s{sup 2}2s2p{sup 6}3l{sup '}nl(n=3-7,l{<=}n-1) and 1s{sup 2}2s{sup 2}2p{sup 5}4l{sup '}nl,1s{sup 2}2s2p{sup 6}4l{sup '}nl(n=4-6,l{<=}n-1) states in Na-like tungsten (W{sup 63+}) are calculated. Cowan's relativistic Hartree-Fock method, the relativistic multiconfiguration method implemented in the Hebrew University Lawrence Livermore Atomic Code, and the relativistic many-body perturbation theory method, are used. Autoionizing levels above the threshold 1s{sup 2}2s{sup 2}2p{sup 6} are considered. It is found that configuration mixing [3sns+3pnp+3dnd],[3snp+3pns+3pnd+3dnp] plays an important role for all atomic characteristics. Also strong mixing between states with 2s and 2p holes (1s{sup 2}2s{sup 2}2p{sup 5}3l{sub 1}nl{sub 2}+1s{sup 2}2s2p{sup 6}3l{sub 3}nl{sub 4}) occurs. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the excited 1s{sup 2}2s{sup 2}2p{sup 6}nl(n=3-7,l{<=}n-1) states. It is shown that the contribution of the highly excited states is very important for calculation of total DR rates. Contributions from the autoionizing states 1s{sup 2}2s{sup 2}2p{sup 5}3l{sup '}nl,1s{sup 2}2s2p{sup 6}3l{sup '}nl(n{>=}8) and 1s{sup 2}2s{sup 2}2p{sup 5}4l{sup '}nl,1s{sup 2}2s2p{sup 6}4l{sup '}nl(n{>=}7) to the DR rate coefficients are estimated by extrapolation of all atomic parameters. The orbital angular momentum (l) distribution of the rate coefficients shows a peak at l=2. The total DR rate coefficient is derived as a function of electron temperature. The dielectronic satellite spectra of W{sup 63+} are important for L-shell diagnostics of very high-temperature laboratory plasmas such as future ITER fusion plasmas.

OSTI ID:
21333870
Journal Information:
Atomic Data and Nuclear Data Tables, Journal Name: Atomic Data and Nuclear Data Tables Journal Issue: 6 Vol. 95; ISSN ADNDAT; ISSN 0092-640X
Country of Publication:
United States
Language:
English