skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wiedemann-Franz ratio in high-pressure and low-temperature thermal xenon plasma with 10% caesium

Conference ·
OSTI ID:212791

Theoretical investigations of various transport properties of low-temperature noble-gas plasmas with additives has aroused a continuous interest over a considerable spall of time, due to numerous applications. In this paper the results of a theoretical evaluation of electrical conductivity, thermal conductivity and their ratio (the Wiedemann-Franz ratio) in xenon plasma with 10% of argon and 10% of caesium are presented, for the temperature range from 2000 K to 20000 K, and for pressures equal to or 5, 10, and 15 time higher than the normal atmospheric pressure. The plasma was regarded as weakly non-ideal and in the state of local thermodynamical equilibrium with the assumption that the equilibrium is attained with the pressure kept constant. The plasma composition was determined on the ground of a set of Saha equations; the ionization energy lowerings were expressed with the aid of a modified plasma Debye radius r*{sub D} (rather than the standard r{sub D}), as proposed previously.

OSTI ID:
212791
Report Number(s):
CONF-950749-; TRN: 96:009959
Resource Relation:
Conference: 22. international conference on phenomena in ionized gases, Hoboken, NJ (United States), 31 Jul - 4 Aug 1995; Other Information: PBD: 1995; Related Information: Is Part Of XXII International conference on phenomena in ionized gases. Contributed papers 2; Becker, K.H.; Carr, W.E.; Kunhardt, E.E. [eds.]; PB: 226 p.
Country of Publication:
United States
Language:
English