skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transport properties and lithium insertion study in the p-type semi-conductors AgCuO{sub 2} and AgCu{sub 0.5}Mn{sub 0.5}O{sub 2}

Journal Article · · Journal of Solid State Chemistry
 [1];  [2]
  1. Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (United States)
  2. Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

The transport properties and lithium insertion mechanism into the first mixed valence silver-copper oxide AgCuO{sub 2} and the B-site mixed magnetic delafossite AgCu{sub 0.5}Mn{sub 0.5}O{sub 2} were investigated by means of four probes DC measurements combined with thermopower measurements and in situ XRD investigations. AgCuO{sub 2} and AgCu{sub 0.5}Mn{sub 0.5}O{sub 2} display p-type conductivity with Seebeck coefficient of Q=+2.46 and +78.83 {mu}V/K and conductivity values of {sigma}=3.2x10{sup -1} and 1.8x10{sup -4} S/cm, respectively. The high conductivity together with the low Seebeck coefficient of AgCuO{sub 2} is explained as a result of the mixed valence state between Ag and Cu sites. The electrochemically assisted lithium insertion into AgCuO{sub 2} shows a solid solution domain between x=0 and 0.8Li{sup +} followed by a plateau nearby 1.7 V (vs. Li{sup +}/Li) entailing the reduction of silver to silver metal accordingly to a displacement reaction. During the solid solution, a rapid structure amorphization was observed. The delafossite AgCu{sub 0.5}Mn{sub 0.5}O{sub 2} also exhibits Li{sup +}/Ag{sup +} displacement reaction in a comparable potential range than AgCuO{sub 2}; however, with a prior narrow solid solution domain and a less rapid amorphization process. AgCuO{sub 2} and AgCu{sub 0.5}Mn{sub 0.5}O{sub 2} provide a discharge gravimetric capacity of 265 and 230 mA h/g above 1.5 V (vs. Li{sup +}/Li), respectively, with no evidence of a new defined phases. - Graphical abstract: Investigation on the transport properties of AgCuO{sub 2} and the new B-site mixed Delafossite AgCu{sub 0.5}Mn{sub 0.5}O{sub 2} shows a p-type conductivity of {sigma}=3.2x10{sup -1} and 1.8x10{sup -4} S/cm, respectively. The high conductivity, as a result from a high charge carrier density in AgCuO{sub 2} supports the existence of a mixed valence state between silver and copper. A particular emphasis is also placed on the electrochemical lithium insertion properties into these two materials by in situ XRD measurements to better insight on the Li{sup +} insertion mechanism and also scrutinize possible new compounds electrochemically accessible in the Li-Ag-Cu system.

OSTI ID:
21212202
Journal Information:
Journal of Solid State Chemistry, Vol. 182, Issue 2; Other Information: DOI: 10.1016/j.jssc.2008.10.038; PII: S0022-4596(08)00526-4; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English