skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural characterization of layered Li{sub x}Ni{sub 0.5}Mn{sub 0.5}O{sub 2}(0

Journal Article · · Chem. Mater.
DOI:https://doi.org/10.1021/cm0204728· OSTI ID:961266

X-ray diffraction and X-ray absorption spectroscopy experiments were used to study chemical and electrochemical Li insertion and extraction reactions of LiNi{sub 0.5}Mn{sub 0.5}O{sub 2}. These results, along with galvanostatic cycling data, suggest that LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} layered electrodes in lithium batteries operate predominantly off two-electron redox couples, Ni{sup 4+}/Ni{sup 2+}, between approximately 4.5 and 1.25 V and Mn{sup 4+}/Mn{sup 2+} between 1.25 and 1.0 V versus metallic Li, respectively. The retention of a stable layered framework structure and the apparent absence of Jahn-Teller ions Ni{sup 3+} and Mn{sup 3+} in the high- or low-voltage region is believed to be responsible for the excellent structural and electrochemical stability of these electrodes. The LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} layered oxide reversibly reacts chemically or electrochemically with Li to form an air-sensitive, dilithium compound, Li{sub 2}Ni{sub 0.5}Mn{sub 0.5}O{sub 2}, with a hexagonal structure analogous to Li{sub 2}MnO{sub 2}. The cycling behavior of Li/LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} cells over a large voltage window (4.6-1.0 V) and with very slow rates shows that rechargeable capacities >500 mA{center_dot}h/g can be obtained.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC); EE
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
961266
Report Number(s):
ANL/CMT/JA-45953; CMATEX; TRN: US201011%%539
Journal Information:
Chem. Mater., Vol. 15, Issue 12 ; 2003; ISSN 0897-4756
Country of Publication:
United States
Language:
ENGLISH