skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

Journal Article · · Cement and Concrete Research
 [1]
  1. Institute of Construction Science 'Eduardo Torroja', IETcc (CSIC), Madrid (Spain)

This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade, X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO{sub 2}, with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity.

OSTI ID:
21208379
Journal Information:
Cement and Concrete Research, Vol. 38, Issue 12; Other Information: DOI: 10.1016/j.cemconres.2008.07.004; PII: S0008-8846(08)00150-6; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0008-8846
Country of Publication:
United States
Language:
English