skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kimberlina 1.2 CCUS Geophysical Models and Synthetic Data Sets

Dataset ·
DOI:https://doi.org/10.18141/1887287· OSTI ID:1887287

This synthetic multi-scale and multi-physics data set was produced in collaboration with teams at the Lawrence Berkeley National Laboratory, National Energy Technology Laboratory, Los Alamos National Laboratory, and Colorado School of Mines through the Science-informed Machine Learning for Accelerating Real-Time Decisions in Subsurface Applications (SMART) Initiative. Data are associated with the following publication: Alumbaugh, D., Gasperikova, E., Crandall, D., Commer, M., Feng, S., Harbert, W., Li, Y., Lin, Y., and Samarasinghe, S., “The Kimberlina Synthetic Geophysical Model and Data Set for CO2 Monitoring Investigations”, The Geoscience Data Journal, 2023, DOI: 10.1002/gdj3.191. The dataset uses the Kimberlina 1.2 CO2 reservoir flow model simulations based on a hypothetical CO2 storage site in California (Birkholzer et al., 2011; Wainwright et al., 2013). Geophysical properties models (P- and S-wave seismic velocities, saturated density, and electrical resistivity) were produced with an approach similar to that of Yang et al. (2019) and Gasperikova et al. (2022) for 100 Kimberlina 1.2 reservoir models. Links to individual resources are provided below: [CO2 Saturation Models](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-co2-saturation-models); Resistivity Models – [part 1](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-resistivity-models-part-1), [part 2](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-resistivity-models-part-2), and [part 3](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-resistivity-models-part-3); [Vp Velocity Models](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-vp-velocity-models); [Vs Velocity Models](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-vs-velocity-models); [Density Models](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-density-models). The 3D distributions of geophysical properties for the 33 time stamps of the SIM001 model were used to generate synthetic seismic, gravity, and electromagnetic (EM) responses for 33 times between zero and 200 years. Synthetic surface seismic data were generated using 2D and 3D finite-difference codes that simulate the acoustic wave equation (Moczo et al., 2007). 2D data were simulated for six point-pressure sources along a 2D line with 10 m receiver spacing and a time spacing of 0.0005 s. 3D simulations were completed for 25 surface pressure sources using a source separation of 1 km in both the x and y directions and a time spacing of 0.001 s. Links to individual resources are provided below: [2D velocity models](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-2d-velocity-models) and [2D surface seismic data](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-2d-surface-seismic-data). [3D velocity models](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-velocity-models), and 3D seismic data [year0](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year0), [year1](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year1), [year2](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year2), [year5](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year5), [year10](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year10), [year15](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year15), [year20](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year20), [year25](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year25), [year30](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year30), [year35](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year35), [year40](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year40), [year45](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year45), [year49](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year49), [year50](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year50), [year51](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year51), [year52](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year52), [year55](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year55), [year60](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year60), [year65](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year65), [year70](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year70), [year75](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year75), [year80](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year80), [year85](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year85), [year90](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year90), [year95](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year95), [year100](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year100), [year110](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year110), [year120](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year120), [year130](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year130), [year140](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year140), [year150](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year150), [year175](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year175), [year200](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-seismic-data-year200). EM simulations used a borehole-to-surface survey configuration, with the source located near the reservoir level and receivers on the surface using the code developed by Commer and Newman (2008). Pseudo-2D data for the source at [2500 m](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-pseudo-2d-csem-data-tz2500m) and [3025 m](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-pseudo-2d-csem-data-tz3025m), used a 2D inline receiver configuration to simulate a response over 3D resistivity models. The [3D data](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-3d-csem-data) contain electric fields generated by borehole sources at monitoring well locations and measured over a surface receiver grid. Vector gravity data, both on the surface and in boreholes, were simulated using a modeling code developed by Rim and Li (2015). The simulation scenarios were parallel to those used for the EM: [pseudo-2D data](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-gravity-data) were calculated along the same lines and within the same boreholes, and [3D data](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-gravity-data) were simulated over 3D models on the surface and in three monitoring wells. A series of [synthetic well logs](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-well-logs) of CO2 saturation, acoustic velocity, density, and induction resistivity in the injection well and three monitoring wells are also provided at 0, 1, 2, 5, 10, 15, and 20 years after the initiation of injection. These were constructed by combining the low-frequency trend of the geophysical models with the high-frequency variations of actual well logs collected in the Kimberlina 1 well that was drilled at the proposed site. Measurements of permeability and pore connectivity were made on cores of Vedder Sandstone, which forms the primary reservoir unit: [CT micro scans](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-ct-micro-scans-of-vedder-formation) and [Industrial CT Images](https://edx.netl.doe.gov/dataset/kimberlina-1-2-ccus-geophysical-models-and-synthetic-data-sets-industrial-ct-images-vedder-formation). These measurements provide the range of scales in the otherwise synthetic data set to be as close to a real-world situation as possible. References: Birkholzer, J.T., Zhou, Q., Cortis, A. and Finsterle, S., 2011. A sensitivity study on regional pressure buildup from large-scale CO2 storage projects. Energy Procedia, 4, 4371-4378. Commer, M., and Newman, G.A., 2008. New advances in three-dimensional controlled-source electromagnetic inversion, Geophysical Journal International, 172, 513-535. Gasperikova, E., Appriou, D., Bonneville, A., Feng, Z., Huang, L., Gao, K., Yang, X., Daley, T., 2022, Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes, Int. J. Greenh. Gas Control, Volume 114, 103585, ISSN 1750-5836, https://doi.org/10.1016/j.ijggc.2022.103585. Moczo, P., J.O. Robertsson and L. Eisner, 2007, The finite-difference time-domain method for modeling of seismic wave propagation: Advances in geophysics, 48, 421-516. Rim, H., and Y. Li, 2015, Advantages of borehole vector gravity in density imaging, Geophysics, 80, G1-G13. Wainwright, H. M.; Finsterle, S.; Zhou, Q.; Birkholzer, J. T., 2013. Modeling the Performance of Large-Scale CO2 Storage Systems: A Comparison of Different Sensitivity Analysis Methods. International Journal of Greenhouse Gas Control, 17, 189205. https://doi.org/10.1016/j.ijggc.2013.05.007, DOI: 10.18141/1603331. Yang, X., Buscheck, T.A., Mansoor, K., Wang, Z., Gao, K., Huang, L., Appriou, D., and Carroll, S.A., 2019. Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in drinking water aquifers, International Journal of Greenhouse Gas Control, 90, 102803, https://doi.org/10.1016/j.ijggc.2019.102803.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States). Energy Data eXchange; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)
Sponsoring Organization:
USDOE Office of Fossil Energy (FE)
DOE Contract Number:
1022462
OSTI ID:
1887287
Report Number(s):
f2044317-c775-4966-8d62-a16ad3426214
Country of Publication:
United States
Language:
English

References (3)

Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in drinking water aquifers journal November 2019
Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes journal February 2022
Modeling the performance of large-scale CO2 storage systems: A comparison of different sensitivity analysis methods journal September 2013