Generalized conformal realizations of Kac-Moody algebras
Journal Article
·
· Journal of Mathematical Physics
- Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg, D-14476 Golm (Germany)
We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilizes a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of Hermitian 3x3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f{sub 4}, e{sub 6}, e{sub 7}, e{sub 8} for n=2. Moreover, we obtain their infinite-dimensional extensions for n{>=}3. In the case of 2x2 matrices, the resulting Lie algebras are of the form so(p+n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q)
- OSTI ID:
- 21175907
- Journal Information:
- Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 1 Vol. 50; ISSN JMAPAQ; ISSN 0022-2488
- Country of Publication:
- United States
- Language:
- English
Similar Records
Kac--Moody and new infinite-dimensional Lie algebras
Screening currents in free-field representations of Kac-Moody algebras
The weak Hopf algebras related to generalized Kac-Moody algebra
Journal Article
·
Sat Nov 30 23:00:00 EST 1991
· Journal of Mathematical Physics (New York); (United States)
·
OSTI ID:5003956
Screening currents in free-field representations of Kac-Moody algebras
Journal Article
·
Mon Sep 30 00:00:00 EDT 1991
· International Journal of Modern Physics A; (United States)
·
OSTI ID:5480157
The weak Hopf algebras related to generalized Kac-Moody algebra
Journal Article
·
Thu Jun 15 00:00:00 EDT 2006
· Journal of Mathematical Physics
·
OSTI ID:20860484