Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The weak Hopf algebras related to generalized Kac-Moody algebra

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.2209771· OSTI ID:20860484
 [1]
  1. Mathematics Department, Zhejiang University, Hangzhou, 310027 (China)

We define a kind of quantized enveloping algebra of a generalized Kac-Moody algebra G by adding a generator J satisfying J{sup m}=J{sup m-1} for some integer m. We denote this algebra by wU{sub q}{sup {tau}}(G). This algebra is a weak Hopf algebra if and only if m=2. In general, it is a bialgebra, and contains a Hopf subalgebra. This Hopf subalgebra is isomorphic to the usually quantum envelope algebra U{sub q}(G) of a generalized Kac-Moody algebra G.

OSTI ID:
20860484
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 6 Vol. 47; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

Conformal subalgebras of Kac-Moody algebras
Journal Article · Fri Nov 14 23:00:00 EST 1986 · Phys. Rev. D; (United States) · OSTI ID:6982697

Contraction of broken symmetries via Kac-Moody formalism
Journal Article · Tue Aug 15 00:00:00 EDT 2006 · Journal of Mathematical Physics · OSTI ID:20860769

Generalized conformal realizations of Kac-Moody algebras
Journal Article · Wed Jan 14 23:00:00 EST 2009 · Journal of Mathematical Physics · OSTI ID:21175907