The weak Hopf algebras related to generalized Kac-Moody algebra
Journal Article
·
· Journal of Mathematical Physics
- Mathematics Department, Zhejiang University, Hangzhou, 310027 (China)
We define a kind of quantized enveloping algebra of a generalized Kac-Moody algebra G by adding a generator J satisfying J{sup m}=J{sup m-1} for some integer m. We denote this algebra by wU{sub q}{sup {tau}}(G). This algebra is a weak Hopf algebra if and only if m=2. In general, it is a bialgebra, and contains a Hopf subalgebra. This Hopf subalgebra is isomorphic to the usually quantum envelope algebra U{sub q}(G) of a generalized Kac-Moody algebra G.
- OSTI ID:
- 20860484
- Journal Information:
- Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 6 Vol. 47; ISSN JMAPAQ; ISSN 0022-2488
- Country of Publication:
- United States
- Language:
- English
Similar Records
Conformal subalgebras of Kac-Moody algebras
Contraction of broken symmetries via Kac-Moody formalism
Generalized conformal realizations of Kac-Moody algebras
Journal Article
·
Fri Nov 14 23:00:00 EST 1986
· Phys. Rev. D; (United States)
·
OSTI ID:6982697
Contraction of broken symmetries via Kac-Moody formalism
Journal Article
·
Tue Aug 15 00:00:00 EDT 2006
· Journal of Mathematical Physics
·
OSTI ID:20860769
Generalized conformal realizations of Kac-Moody algebras
Journal Article
·
Wed Jan 14 23:00:00 EST 2009
· Journal of Mathematical Physics
·
OSTI ID:21175907