Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermal Interaction Between Molten Metal and Sodium: Examination of the Fragmentation Mechanism of Molten Jet

Conference ·
OSTI ID:21072907
; ;  [1]; ;  [2]
  1. Central Research Institute of Electric Power Industry - CRIEPI (Japan)
  2. Hokkaido University, North Ward, Sapporo 060-8628 (Japan)

In order to clarify the mechanism of thermal fragmentation of a molten jet dropped into a sodium pool at instantaneous contact interface temperatures below its freezing point, a basic experiment was carried out using molten copper and sodium. Copper was melted in a crucible with an electrical heater and was dropped through a short nozzle into a sodium pool, in the form of a jet column. Thermal fragmentation originating inside the molten copper jet with a solid crust was clearly observed in all runs. It is verified that a small quantity of sodium, which is locally entrained inside the molten jet due to the organized motion between the molten jet and sodium, is vaporized by the sensible heat and the latent heat of molten copper, and the high internal pressure causes the molten jet with a solid crust to fragment. It is also concluded that the thermal fragmentation is more dominant than the hydrodynamic fragmentation, in the present range of Weber number and superheating of molten jet. Furthermore, it can be explained that the thermal fragmentation caused by the molten copper jet - sodium interaction is severer than that caused by the molten uranium alloy jet - sodium interaction, which was reported by Gabor et al., because the latent heat and the thermal diffusivity of molten copper, which are the physical properties that dominate the degree of fragmentation, are much higher than those of molten uranium alloy jets. (authors)

Research Organization:
The ASME Foundation, Inc., Three Park Avenue, New York, NY 10016-5990 (United States)
OSTI ID:
21072907
Country of Publication:
United States
Language:
English

Similar Records

Thermal Interaction Between Molten Metal Jet and Sodium Pool: Effect of Principal Factors Governing Fragmentation of the Jet
Journal Article · Mon Feb 14 23:00:00 EST 2005 · Nuclear Technology · OSTI ID:20840240

Experimental Study of Molten Metallic Fuel Relocation in Sodium-Filled Fuel Structures
Journal Article · Fri Jul 01 00:00:00 EDT 2016 · Transactions of the American Nuclear Society · OSTI ID:23042904

Crust formation and its effect on the molten pool coolability
Technical Report · Fri Sep 01 00:00:00 EDT 1995 · OSTI ID:115067