skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of aluminium-clad steel sheet by roll-bonding for the automotive industry

Abstract

The objective of the present work is a basic study of production, modelling and validation of sheet composites of AA6xxx-automotive alloy and IF-steel. In this context the influence of surface preparation, pre-heating temperature of aluminium and steel plate, and thickness reduction on the bond strength of the composites as well as on the formation of intermetallic interface layers is analysed by shear tests and metallographic evaluations of the interface.

Authors:
;  [1]; ;  [2]
  1. University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)
  2. ARC Leichtmetallkompetenzzentrum Ranshofen GmbH, Postfach 26, A-5282 Ranshofen (Austria)
Publication Date:
OSTI Identifier:
21057021
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 907; Journal Issue: 1; Conference: 10. ESAFORM conference on material forming, Zaragoza (Spain), 18-20 Apr 2007; Other Information: DOI: 10.1063/1.2729522; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ADHESION; ALUMINIUM; ALUMINIUM ALLOYS; BONDING; COMPOSITE MATERIALS; HEATING; INTERFACES; INTERMETALLIC COMPOUNDS; LAYERS; MATERIALS TESTING; PLATES; SHEAR; SHEETS; STEELS; SURFACES; TEMPERATURE DEPENDENCE

Citation Formats

Buchner, M., Buchmayr, B., Bichler, Ch., and Riemelmoser, F.. Development of aluminium-clad steel sheet by roll-bonding for the automotive industry. United States: N. p., 2007. Web. doi:10.1063/1.2729522.
Buchner, M., Buchmayr, B., Bichler, Ch., & Riemelmoser, F.. Development of aluminium-clad steel sheet by roll-bonding for the automotive industry. United States. doi:10.1063/1.2729522.
Buchner, M., Buchmayr, B., Bichler, Ch., and Riemelmoser, F.. Sat . "Development of aluminium-clad steel sheet by roll-bonding for the automotive industry". United States. doi:10.1063/1.2729522.
@article{osti_21057021,
title = {Development of aluminium-clad steel sheet by roll-bonding for the automotive industry},
author = {Buchner, M. and Buchmayr, B. and Bichler, Ch. and Riemelmoser, F.},
abstractNote = {The objective of the present work is a basic study of production, modelling and validation of sheet composites of AA6xxx-automotive alloy and IF-steel. In this context the influence of surface preparation, pre-heating temperature of aluminium and steel plate, and thickness reduction on the bond strength of the composites as well as on the formation of intermetallic interface layers is analysed by shear tests and metallographic evaluations of the interface.},
doi = {10.1063/1.2729522},
journal = {AIP Conference Proceedings},
number = 1,
volume = 907,
place = {United States},
year = {Sat Apr 07 00:00:00 EDT 2007},
month = {Sat Apr 07 00:00:00 EDT 2007}
}
  • Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability ofmore » this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.« less
  • High temperature oxidation resistant alloys are currently considered as candidate materials for construction of interconnects in intermediate temperature SOFCs. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages for the interconnect applications, and few if any can completely satisfied the stringent requirements for the applications. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as the approach to fabricate metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL453 were selected as examples and manufacturedmore » into a clad metal. It’s suitability as interconnect construction materials were investigated. This paper will give a brief overview of the cladding approach and discuss the viability of this technology to fabricate the metallic layered-structure interconnects.« less
  • The potential of fibre reinforced metal matrix composites (MMC) has been known for many years and their common fabrication routes and the general characteristics of their properties are well documented. These manufacturing routes are usually expensive and consistent results are difficult to maintain. This paper introduces an economical process for the preparation of an aluminum matrix MMC reinforced with alumina (Al[sub 2]O[sub 3]). The process involves the formation of thin Al[sub 2]O[sub 3] films on commercially pure (CP) aluminium foil by anodizing. The bonding between layers of foil and Al[sub 2]O[sub 3] is achieved by hot rolling followed by coldmore » rolling to further break up of the thin Al[sub 2]O[sub 3] film and disperse it into the aluminium matrix. The aim was to produce an MMC with a low volume fraction of Al[sub 2]O[sub 3] finely dispersed in the aluminium matrix. The physical and mechanical properties of this material may not be comparable with MMCs produced by conventional techniques in terms of strength and stiffness. However, its inexpensive production route coupled with an increase Young's Modulus, strength and retained good electrical conductivity may well make it a valuable alternative material to be used in electricity transmission applications. The production technique used in making this MMC can readily be adopted by any aluminium sheet rolling plant. With minimal need for equipment alterations, they can convert to produce this form of MMC in semi or fully continuous production runs with their existing rolling mills. This process will greatly reduce the cost of an MMC and at the same time maintain consistent properties.« less
  • Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 [mu]m Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain ([eta][gt] 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causesmore » a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains ([eta][gt]3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct ([eta] [approx equal]2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( [eta][gt]10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet.« less
  • The texture evolution in an Fe–36%Ni (wt.%) alloy, severely deformed to a true strain of 4.8 by cross accumulative roll bonding, was investigated using X-ray diffraction and a visco-plastic self-consistent simulation. At the surface, the C component ((100)<011>) exhibited a strong continuous strengthening from cycles 1 to 5. At the mid-thickness region, the texture evolution appeared to be cyclic due to the cyclic nature of the imposed deformation. A copper-type texture was observed even after cycles, whereas a new major texture component named H ((012)<22{sup ¯}1>) was formed after odd cycles, with several other minor ones belonging to a (210)more » fiber. A significant change in the plastic anisotropy was introduced by cross accumulative roll bonding processing. - Highlight: • The texture after CARB is characterized by a typical C shear component near the surface. • The texture evolution in the mid thickness of samples seen to be cyclic • VPSC model reproduced the experimental texture in the early CARB cycle. • The CARB process can reduce the plastic anisotropy of the sheet.« less