skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 4D Proton treatment planning strategy for mobile lung tumors

Abstract

Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans usingmore » 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.« less

Authors:
 [1];  [1];  [2];  [1];  [2];  [2];  [2];  [2];  [1];  [1];  [1];  [1];  [3]
  1. Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)
  2. Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)
  3. Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States). E-mail: ldong@mdanderson.org
Publication Date:
OSTI Identifier:
20944745
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 3; Other Information: DOI: 10.1016/j.ijrobp.2006.10.045; PII: S0360-3016(06)03385-2; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CARCINOMAS; COMPUTERIZED TOMOGRAPHY; IMAGES; LUNGS; PATIENTS; PLANNING; PROTON BEAMS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RESPIRATION

Citation Formats

Kang Yixiu, Zhang Xiaodong, Chang, Joe Y., Wang He, Wei Xiong, Liao Zhongxing, Komaki, Ritsuko, Cox, James D., Balter, Peter A., Liu, Helen, Zhu, X. Ronald, Mohan, Radhe, and Dong Lei. 4D Proton treatment planning strategy for mobile lung tumors. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.10.045.
Kang Yixiu, Zhang Xiaodong, Chang, Joe Y., Wang He, Wei Xiong, Liao Zhongxing, Komaki, Ritsuko, Cox, James D., Balter, Peter A., Liu, Helen, Zhu, X. Ronald, Mohan, Radhe, & Dong Lei. 4D Proton treatment planning strategy for mobile lung tumors. United States. doi:10.1016/j.ijrobp.2006.10.045.
Kang Yixiu, Zhang Xiaodong, Chang, Joe Y., Wang He, Wei Xiong, Liao Zhongxing, Komaki, Ritsuko, Cox, James D., Balter, Peter A., Liu, Helen, Zhu, X. Ronald, Mohan, Radhe, and Dong Lei. Thu . "4D Proton treatment planning strategy for mobile lung tumors". United States. doi:10.1016/j.ijrobp.2006.10.045.
@article{osti_20944745,
title = {4D Proton treatment planning strategy for mobile lung tumors},
author = {Kang Yixiu and Zhang Xiaodong and Chang, Joe Y. and Wang He and Wei Xiong and Liao Zhongxing and Komaki, Ritsuko and Cox, James D. and Balter, Peter A. and Liu, Helen and Zhu, X. Ronald and Mohan, Radhe and Dong Lei},
abstractNote = {Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.},
doi = {10.1016/j.ijrobp.2006.10.045},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 3,
volume = 67,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}
  • We performed a treatment planning study in order to gather basic insight in the effect of setup errors and breathing motion on the cumulative proton dose to a lung tumor. We used a simplified geometry that simulates a 50 mm diameter gross tumor volume (GTV) located centrally inside lung tissue. The GTV was expanded with a uniform 5 mm margin into a clinical target volume (CTV) and into a variety of planning target volume (PTV's). Proton beam apertures were designed to conform the prescribed dose laterally to the PTV while the range compensator was designed to provide distal coverage ofmore » the CTV. Different smearing distances were applied to the range compensators, and the cumulative dose in the CTV was evaluated for different combinations of breathing motion and systematic setup errors. Evaluation parameters were the dose to 99% of the CTV (D{sub 99}) and the equivalent uniform dose (EUD), with a surviving fraction at 2 Gy of SF{sub 2}=0.5. For a single proton field designed to a 15 mm expansion of the CTV and without smearing applied to the range compensator, D{sub 99} of the CTV reduced from 96% for no tumor displacement to 41% and 13% for systematic setup errors of 5 and 10 mm, respectively. For a representative clinical combination, of 5 mm systematic error and 10 mm breathing amplitude, the EUD of the CTV was about 40 Gy (prescribed dose 70 Gy) regardless the CTV to PTV margin, and without smearing. Smearing the range compensator increases the dose to the CTV substantially with a lateral margin and smearing distance of 7.5 mm providing ample tumor coverage. In this latter case, D{sub 99} of the target volume increased to 87% for a single field treatment plan. Smearing does, however, lead to an increase in dose to normal tissues distal to the clinical target volume. Next to countering geometric mismatches due to patient setup, smearing can also be used to counter the detrimental effects of breathing motion on the dose to the clinical target volume. We show that the lateral margin and smearing distance can be substantially smaller than the maximum tumor displacement due to setup errors and patient breathing, as measured by the D{sub 99} and the EUD.« less
  • Purpose: In proton radiotherapy, respiration-induced variations in density lead to changes in radiologic path lengths and will possibly result in geometric misses. We compared different treatment planning strategies for lung tumors that compensate for respiratory motion. Methods and Materials: Particle-specific treatment planning margins were applied to standard helical computed tomography (CT) scans as well as to 'representative' CT scans. Margins were incorporated beam specific laterally by aperture widening and longitudinally by compensator smearing. Furthermore, treatment plans using full time-resolved 4D-computed tomography data were generated. Results: Four-dimensional treatment planning guaranteed target coverage throughout a respiratory cycle. Use of a standard helicalmore » CT data set resulted in underdosing the target volume to 36% of the prescribed dose. For CT data representing average target positions, coverage can be expected but not guaranteed. In comparison to this strategy, 4D planning decreased the mean lung dose by up to 16% and the lung volume receiving 20 Gy (prescribed target dose 72 Gy) by up to 15%. Conclusion: When the three planning strategies are compared, only 4D proton treatment planning guarantees delivery of the prescribed dose throughout a respiratory cycle. Furthermore, the 4D planning approach results in equal or reduced dose to critical structures; even the ipsilateral lung is spared.« less
  • Purpose: With energy repainting in lung IMPT, the dose delivered is approximate to the convolution of dose in each phase with corresponding breathing PDF. This study is to compute breathing PDF weighted 4D dose in lung IMPT treatment and compare to its initial robust plan. Methods: Six lung patients were evaluated in this study. Amsterdam shroud image were generated from pre-treatment 4D cone-beam projections. Diaphragm motion curve was extract from the shroud image and the breathing PDF was generated. Each patient was planned to 60 Gy (12GyX5). In initial plans, ITV density on average CT was overridden with its maximummore » value for planning, using two IMPT beams with robust optimization (5mm uncertainty in patient position and 3.5% range uncertainty). The plan was applied to all 4D CT phases. The dose in each phase was deformed to a reference phase. 4D dose is reconstructed by summing all these doses based on corresponding weighting from the PDF. Plan parameters, including maximum dose (Dmax), ITV V100, homogeneity index (HI=D2/D98), R50 (50%IDL/ITV), and the lung-GTV’s V12.5 and V5 were compared between the reconstructed 4D dose to initial plans. Results: The Dmax is significantly less dose in the reconstructed 4D dose, 68.12±3.5Gy, vs. 70.1±4.3Gy in the initial plans (p=0.015). No significant difference is found for the ITV V100, HI, and R50, 92.2%±15.4% vs. 96.3%±2.5% (p=0.565), 1.033±0.016 vs. 1.038±0.017 (p=0.548), 19.2±12.1 vs. 18.1±11.6 (p=0.265), for the 4D dose and initial plans, respectively. The lung-GTV V12.5 and V5 are significantly high in the 4D dose, 13.9%±4.8% vs. 13.0%±4.6% (p=0.021) and 17.6%±5.4% vs. 16.9%±5.2% (p=0.011), respectively. Conclusion: 4D dose reconstruction based on phase PDF can be used to evaluate the dose received by the patient. A robust optimization based on the phase PDF may even further improve patient care.« less
  • Purpose: To develop a formulation for 4D treatment planning for a tumour tracking volumetric modulated arc therapy treatment (VMAT) plan for lung cancer. Methods: A VMAT plan was optimized based on a reference phase of the 4DCT of a lung cancer patient. The PTV was generated from the GTV of the reference phase. The collimator angle was set to 90 degrees such that the MLC travels along superior-inferior direction which is the main component of movement of a lung tumour. Then, each control point of the VMAT plan was assigned to a particular phase of the 4DCT in chronological order.more » The MLC positions of each control point were shifted according to the position of the tumour centroid of its assigned phase to form a tumour tracking VMAT plan. The control points of the same phase were grouped to form a pseudo VMAT plan for that particular phase. Dose calculation was performed for each pseudo VMAT plan on the corresponding phase of the 4DCT. The CTs of all phases were registered to the reference phase CT according to the displacement of the tumour centroid. The individual dose distributions of the pseudo VMAT plans were summed up and displayed on the reference phase of the 4DCT. A control VMAT plan was optimized based on a PTV generated from the ITV of all phases and compared with the tumour tracking VMAT plan. Results: Both plans achieved >95% volume coverage at the prescription dose level (96% for the tumour tracking plan and 97% for the control plan). But the normal lung volume irradiated at the prescription dose level was 39% less for the tumour tracking plan than the control plan. Conclusion: A formulation of 4D treatment planning for tumour tracking VMAT plans for lung cancer was developed.« less
  • Purpose: To develop a 4D treatment optimization approach for Pencil Beam Scanned (PBS) proton therapy that includes breathing variability. Method: PBS proton therapy delivers a pattern of proton pencil beams (PBs), distributed to cover the target volume and optimized such as to achieve a homogenous dose distribution across the target. In this work, this optimization step has been enhanced to include advanced 4D dose calculations of liver tumors based on motion extracted from either 4D-CT (representing a single and averaged respiratory cycle) or 4D-CT(MRI) (including breathing variability). The 4D dose calculation is performed per PB on deforming dose grid, andmore » according to the timestamp of each PB, a displacement due to patient’s motion and a change in radiological depth.Three different treatment fields have been optimized in 3D on the end-exhale phase of a 4D-CT liver data set (3D-opt) and then in 4D using the motion extracted from either 4D-CT or 4D-CT(MRI) using deformable image registration. All plans were calculated directly on the PTV without the use of an ITV. The delivery characteristics of the PSI Gantry 2 have been assumed for all calculations. Results: Dose inhomogeneities (D5-D95) in the CTV for the 3D optimized plans recalculated under conditions of variable motion were increased by on average 19.8% compared to the static case. These differences could be reduced by 4D-CT based 4D optimization to 10.5% and by 4D-CT(MRI) based optimization to only 2.3% of the static value. Liver V25 increased by less than 1% using 4D optimization. Conclusion: 4D optimized PBS treatment plans taking into account breathing variability provide for significantly improved robustness against motion and motion variability than those based on 4D-CT alone, and may negate the need of motion specific target expansions. Swiss National Fund Grant (320030-1493942-1)« less